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Abstract

Traditional information visualisation is concerned with methods of drawing a complete picture of

an entire dataset. By contrast, much of modern information visualisation deals with the problem

of how to see datasets that are too large to be displayedin toto. This problem is known aslarge

scaleinformation visualisation. The most common approach is to display only part of the dataset,

but allow the user tonavigateeasily to other parts of the dataset that are not shown.Focus +

Contexttechniques address large scale information visualisation by presenting a small amount of

“focus” data at a high level of detail, surrounded by the majority of the remaining data at a low

level of detail, the “context”. The majority of Focus + Context techniques to date have been based

on geometric distortion, where the visualisation of the entire dataset is adjusted to show the focus

region at normal magnification, whilst demagnifying the context region.

An alternative to geometric distortion isdata-drivenFocus + Context, where the concepts of “fo-

cus”, “context”, “zooming” and “navigation” are defined in terms ofmulti-detaildatasets that store

the data using multiple levels of detail. Data-driven methods require the development of new tech-

niques for the presentation and animation of information. This thesis presents a new data-driven

Focus + Context technique which we callStructural Zooming.

Structural Zooming is presented in a visualisation independant way that allows any illustration of

any type of data to be adapted for use with Structural Zooming. Further, a method is given for

performing Structural Zooming of relational data, namely trees and clustered graphs. This has the

advantages of geometric zooming techniques (such as Graphical Fisheye Views and the Hyperbolic

Browser), including high detail focus, low detail context, smoothly animated transitions during

navigation and preservation of a high quality, aesthetically pleasing layout. In addition, it has

advantages over geometric zooming, including an approximately constant level of visual complexity

by presenting less data at lower detail in the context region, preservation of spatial properties and

the ability to leverage existing information visualisation techniques. We define empirical quality

measures and present an experimental evaluation of Structural Zooming of relational data using

these measures. This evaluation utilises a corpus of data files from three application domains, and

navigation data derived both from real users and computational models of navigation, in order to

validate the design choices made in the application of Structural Zooming to relational data.
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Introduction

Black then white are, all I see, in my infancy,

red and yellow then came to be, reaching out to me,

lets me see. There is so much more that beckons me,

to look through to these infinite possibilities.

As below, so above and beyond, I imagine.

Drawn outside the lines of reason.

Push the envelope. Watch it bend.

– – Maynard James Keenan, “Lateralis”

The field of information visualisation is concerned with effective ways to see very large amounts

of data. Vast amounts of data of many types is being collected at rapid rates in many areas of science

and business [1, 8]. Similarly, the capacity of mass online storage devices is rapidly increasing [68].

In many cases, this data is being collected and archived faster than it can be processed or analysed by

humans or machines. Often this data is so large that specialised new algorithms known asexternal

memory algorithmsare required [2, 3], since the efficiency of existing algorithms hinges on loading

the entire dataset into memory. In order to be of any real use, this data must be processed in a timely

manner, and it must be possible for humans to obtain actual information from the data. This means

that the data must bedisplayedin some way to human users. Figure 1.1 shows the flow of data,

from its collection in the real world, to storage as data, its display on a display device, and finally

to perception by a human. At each of these stages, the available bandwidth and processing power

diminishes, as indicated by the arrow sizes. Information visualisation is concerned with the final

two stages, that of presenting data on a display device that is subsequently viewed by humans.

There are two main ways to approach the visualisation of data, illustrated in Figure 1.2. The

first is to directly visualise the data, presenting all or part of the data to the user. The second is to
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Real World

Data Display Human
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Figure 1.1: The flow of data from the real world to humans through information visualisation.
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Figure 1.2: The two main approaches for the visualisation of data.

usecomputational analysisto process the data in some way (for example,data miningtechniques

such asclustering), and then visualise the results of this processing. Such strategies are often

difficult to implement and suffer from scalability and complexity issues, requiring inordinately large

amounts of computational power (such asdistributedandparallel supercomputers). In addition, the

presentation of the algorithm results to the user is also a visualisation problem. For these reasons,

this thesis deals with the direct visualisation of data, where the data may be original raw data, or

may be the results of various stages of processing.

The idea behind direct visualisation is to utilise the potential processing power of the human

brain. The brain is very good at processing certain types of information, such as visual patterns, and

can do these tasks very quickly and with high accuracy [166]. Many perceptual tasks are performed

automatically at a low-level, which is not only fast, but frees the higher level cognitive functions

to concentrate on harder problems, such as understanding and interpreting the data, and making

decisions based on it. Presenting the data to the user in the right way can allow the user to “see”

more information in the data more quickly than any amount of computational power. This is an area

of information visualisation known asvisual data mining, so-called because the “data mining” is

performed visually by the human [82]. However, not all visualisations have this effect. Because the



1.1 The detail-context tradeoff 3

vision system is so influential in most human thought processes, it is easy for erroneously presented

data to be highly confusing and even misleading (either intentionally or accidentally) [159]. Thus,

it is important to ensure that all visualisations are of high quality.

This thesis is concerned with presenting large amounts of data to human users in ways that

facilitate these benefits. The aim is to allow users to view, navigate and potentially modify the large

dataset with the same level of ease afforded by smaller, more accessible datasets.

1.1 The detail-context tradeoff

The fields of computer graphics and human-computer interaction received a major advance in 1962

with the development ofSketchpad[153, 154], a revolutionary computer aided drawing program.

Sketchpad used acathode ray tubeas avectordisplay device to show geometric objects as a col-

lection of smooth lines and curves. However, all modern computer displays present images in a

raster form, that is, as a 2 dimensional matrix of small display elements known aspixels(short for

picture elements). The transition from vector to raster presentations was mainly due to memory

becoming available in the quantities and speeds required to support aframe bufferof pixels to be

shown. Each pixel in a raster display can assume a colour, and so an image is created by choosing

pixel colours appropriately. The number of pixels in a display is itsresolutionand the number of

possible colours for each pixel is itscolour depth. In 2004, a typical computer display has resolu-

tion between1024× 768 (about 750 000 pixels, or 0.75megapixels) and1600× 1200 (about 1.92

megapixels), and colour depth around216.

The quality of a raster display depends directly on its resolution and colour depth. Specifically,

an increase in resolution or colour depth corresponds to an increase in the amount of fine detail that

can be shown in the image. However, colour depth is of more importance for photographic and pho-

torealistic images; information visualisation is only rarely limited by the colour depth available on

modern computers [107]. On the other hand, resolution is increasingly a limiting factor in informa-

tion visualisation. The resolution of standard desktop monitors has remained between about 1 and

2 megapixels for the past 10 years, and projector displays have been limited to about 1 megapixel

during this time. This is an issue, when coupled with the need to visualise large amounts of data.

Advances in seamless tiled display technology such as the 9 megapixel High Density Display at the

San Diego Supercomputer Center [134] have helped to increase the available resolution, but require

highly specialised and bulky hardware and careful calibration to achieve acceptable image quality.
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Desktop monitors with resolutions as high as 9 megapixels (3840× 2400) were announced in 2004

[171], although at a very high price. Although this may seem like a large increase (almost a factor

of 10), the growth of dataset sizes is expected to easily outstrip any foreseeable improvements in

display resolution. In addition, there are fundamental limits of human perception that cannot easily

be improved. These low-level limits approximately correspond to a 16 megapixel display device

[166], and are discussed in more detail below. For these reasons, much research in information

visualisation has focused on methods of presenting data on displays of relatively poor resolution,

compared to the size of the data itself. For example, displaying a tree or graph with 10,000 labelled

nodes on a 1 megapixel display allows only 100 pixels per node on average — not even enough to

show a node label of a moderate amount of text. This means that a more sophisticated method of

visualisation is required.

The assumption of a fixed display resolution gives rise to thedetail–context tradeoff. Display

space in the form of pixels may be used either to show a large amount of detail for a small logical

area, or to show a low level of detail for a large logical area. Figure 1.3 demonstrates this idea

by showing a section of a street map for Circular Quay in Sydney Harbour at a fixed resolution.

Figure 1.3(a) shows a large area at low detail, Figure 1.3(b) shows a smaller area at an intermediate

higher level of detail, and Figure 1.3(c) shows a small area at a high level of detail. Many fine details,

such as the information booth between wharves 4 and 5, are present in Figure 1.3(c) that would be

impossible to show in Figure 1.3(a). However, Figure 1.3(c) is lacking incontextinformation that

indicates locations on a larger scale. For example, it is not possible to see surrounding monuments

in Figure 1.3(c), whereas Figure 1.3(a) clearly shows the Sydney Opera House and its location

relative to Circular Quay. Figure 1.4 illustrates the detail–context tradeoff diagrammatically. The

exact position of the line depends on the characteristics of the display.

The human visual system has been extensively studied in the area ofperceptual psychology,

both in general [65, 140] and as it relates to information visualisation [166]. This research suggests

that the “bandwidth” of the human perceptual system for gathering and processing sensory infor-

mation is limited [166]. This limitation is a result of human physiology and psychology, which is,

for the most part, “hard-wired” into our brains such that we have little or no direct control over the

systems involved.

For example, the number, density and arrangement of cone receptors on the retina of the eye,

and the “brain pixels” associated with ganglion structures, are physiological limitations over which
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Figure 1.4: The detail–context tradeoff.

Figure 1.5: From [166] (Figure 5.5): Most of the differences shown above are pre-attentively distinguished.
Only juncture and parallellism are not. Reprinted from [166], Copyright 2000, with permission from Elsevier.
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Figure 1.6: The Müller-Lyer optical illusion.

humans have little control. In the context of information visualisation this places practical limits on

the necessary spatial and colour resolution of display devices.

An example of a psychological limitation is the way in which the human visual system perceives

certain visual stimulipre-attentively, that is, involuntarily and without conscious awareness of it.

Pre-attentive processing is very fast and powerful, as it allows particular types of visual stimuli to

be identified and located in an amount of time that is independant of the number of “distractor”

objects. For patterns that are not pre-attentively processed, a linear search through all the objects

must be used [166]. Figure 1.5 presents a collection of images that show various pre-attentive

attributes. In the context of information visualisation, this suggests that these attributes may be

exploited for applications involving visual data mining or visual search. A related area isoptical

illusions [65, 71, 139], such as the classic Müller-Lyer illusion shown in Figure 1.6 where the

apparent lengths of line-segments is influenced by other lines at the endpoints. Such misleading

illusory effects should be rigorously avoided in information visualisation.

An example of a cognitive limitation is the number of “chunks” of information that humans can

retain in short-term memory (also known as “working memory”). This well-known result states

that humans are able to reason most effectively with7 ± 2 “units of information” stored in short-

term memory [100]. In the context of information visualisation, this suggests that the amount of

information that can be recalled between views in an interactive navigation is limited to around 7.

Thus, although display device technology is improving, the fundamental limitations in the hu-

man visual perception system mean that the available “bandwidth” for the visual presentation of

information is limited. Increasing these limitations is not possible, and so information visualisation

must devise methods that work well in these limited conditions.

Large scaleinformation visualisation is concerned with techniques for the visualisation of large

amounts of data, specifically, more than can fit on commonplace display devices using traditional
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techniques. In this situation, the detail–context tradeoff is a particular problem. This is because the

detail required to display an amount of data on the screen increases as the size of the data increases,

and thus the lower the context that may be displayed.

The traditional and naı̈ve methodology for dealing with this is known asSimple Pan + Zoom.

This displays the data at a particularuniformzoom level over the entire display, and provides the

user with navigation operations forpanningand changing the zoom level. Panning is moving to

neighbouring or adjacent regions in the data without changing the zoom level. This methodology is

only acceptable for small datasets, and does not scale up well to large scale information visualisa-

tion. This is because when ‘zoomed in’ it provides no context, and when ‘zoomed out’ it provides

no details. Thus, the user is required to navigate between such views and combine them mentally. A

much more desirable system is one in which some context information can be provided in addition

to a detailed view, these are known as “Focus + Context” systems, and are discussed below.

Interactive navigation is an essential part of all large scale information visualisation systems, in

order that users may see information that is not currently shown. This requires users to mentally

integrate temporally disjoint views of the data. Research has shown that humans do this by forming

an internalised “mental map” or “cognitive map” of the data [87, 88, 157, 162]. As the views are

temporally disjoint, users must rely on their limited short term memory when comparing two or

more views, thus potentially hindering the construction of the mental map.

Whilst pyschological researchers are in agreement that such a map exists, there is no concensus

on the exact nature of how these maps are stored and processed by the brain. However, the fact

that there is some spatial or visual basis to the mental map is apparent from the way that a user’s

mental map can be “lost”, or made useless, by rearranging the contents of a diagram. This has been

studied in the field of graph drawing [43, 101], where three mathematical models are presented for

the preservation of the mental map between subsequent views of a diagram. These mathematical

models are:

Orthogonal Ordering is the simplest and most basic representation of the mental

map. It states that the “up”, “down”, “left” and “right” relations between all

pairs of nodes should be maintained between layouts of a graph.

Proximity Relations is the idea that the distances between nodes ought to be pre-

served: close nodes should stay nearby, and far nodes should stay further
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away. This can also be thought of as the spatial clustering of the nodes in the

diagram.

Topology is concerned with the faces of the plane that are created by the edges (and

their crossings) in a graph. In graph drawing, this is known as theembed-

ding of the graph, and is quantified by thedual graph(where edge crossings

are considered to be the insertion of a “dummy” node, causing this modified

graph to have the property of being straight-line planar).

TheForce Scan Algorithm(FSA) [42, 89, 90, 101] applies these mental map principles to the

problem of creating disjoint-node images from the output of classical graph drawing algorithms.

It is discussed in more detail in Section 4.2. The SHriMP Layout Adjustment Algorithm [149] is

an application of these mental map principles to the hierarchical Geometric Fisheye View found in

the SHriMP visualisation system, which is discussed further in Section 1.2.3 below. Animation has

been suggested as a method of improving the construction and preservation of the mental map; this

is discussed in more detail in Section 1.2.5 below.

This thesis utilises these mental map models in two places: in the design of a “stable” inclusion

tree layout, presented in Section 4.2.1, and in the design of several measures for the empirical

evaluation of Structural Zooming of relational information, presented in Section 4.4.

TheFocus + Contextmethodology of large scale information visualisation attempts to resolve

the problems of Simple Pan + Zoom by displaying a small amount of data at high detail, known as

the focus view, together with a large amount of the data at low detail, known as thecontext view.

This has the benefit of allowing the user to see details in the region of interest, whilst still seeing

the approximate location of this focus data in relation to the entire dataset. This transforms the

task of finding and examining context, in order to support navigation, from being cognitive to being

perceptual, and supports the creation and preservation of the user’s mental map.

1.2 Previous work

This section reviews previous work in areas related to large scale information visualisation, the

mental map and animation.
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Figure 1.7: A (u,w) space-scale diagram from [165]. Thew axis corresponds to the distance of the camera
above the plane, and is thus the “scale” of the produced image. Theu axis corresponds to space, here it is
shown as 1D, but can easily be extended to 2D (consider theu axis to be a “side” view of the plane).

1.2.1 Uniform zooming

Uniform zoomingis a class of visualisation techniques where a uniform geometric magnification is

applied to the display. It includes Simple Pan + Zoom techinques, as well as various extensions that

are now discussed.

Rapid zooming, also known as thezoomable user interface(or ZUI), aims to reduce the cogni-

tive effort associated with navigating in the absence of any on-screen context. It works by consider-

ing the visualisation to exist on an infinite plane of infinite resolution. The view is that obtained by

a virtual camera viewing the plane perpendicularly from above. Zooming in and out corresponds to

the distance of the camera above the plane, as shown in thespace-scale diagramin Figure 1.7 [61].

Rapid zooming methods and ZUIs allow the user to be able to zoom in and out of the scene very

rapidly, and these operations are animated in the manner that would be observed whilst moving the

camera vertically. This allows the user to very quickly change between an overview of the visual-

isation and any detailed view. The idea is that the rapidity of this operation lowers the cognitive

barrier to the user’s understanding of the entire visualisation. Several software toolkits are available

that allow ZUIs to be easily developed and integrated into other information visualisation systems

— the most notable being the Pad—Pad++—Jazz—Piccolo lineage of toolkits [19, 22].

In uniform zooming systems, panning operations may additionally make use of the zoom level,

rather than being at a constant zoom level as in Simple Pan + Zoom. A straightforward strategy

is to have the system automatically zoom out to a full overview of the visualisation, following by

zooming in to the new detail location. This allows the user to see the context of the two detail views.

However, it may not be necessary to zoom out completely, and it is possible to begin panning prior
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to the end of the zoom-out operation. This corresponds to a path in the space-scale diagram, such

as from(u0, w0) to (u1, w1) in Figure 1.7. Research on suchspeed-dependant automatic zooming

has shown it to be superior to conventional Simple Pan + Zoom (which is the straight line between

(u0, w0) and(u1, w1) in Figure 1.7) [27, 78, 165, 168].

Semantic zoomingis a related technique for automatically adjusting the visual representation

of the displayed data, depending on the zoom level [58, 59, 116]. For example, a map of a rail-

way network when zoomed-out shows only circles for stations and connecting lines. As the user

zooms-in to a particular region, the stations may change to include a circle and the name of the

station. Zooming in further may change the station representation to indicate its shape and number

of platforms. The highest level of zoom, when the user is zooming-in on one station alone, may be

an arial photograph or floorplan of the station, showing entrances, exits, facilities, and so on. The

benefit of semantic zooming, though, is that it offers the possibility of changing the representation

to show other information, rather than the simple geometric example described above. For example,

when a user zooms-in to a single station the consequent display may show timetable or fare pricing

information relating to that station.

Uniform zooming systems generally suffer from problems relating to thedensityof information

presented. This is an issue in the zooming axis: different zoom levels may show different amounts of

information. It is also an issue in the spatial dimension: different parts of the visualisation may have

different amounts of information. These problems are addressed in research onconstant information

density[173, 174], which presents a method for equalising the density of information shown in

rapid zooming and semantic zooming systems. This work has not been applied to geometric Focus

+ Context systems (described below in Section 1.2.3), although doing so should be straightforward.

1.2.2 Multiple coordinated views

A natural extension of uniform zooming is that ofmultiple coordinated viewsfor presenting data at

several disjoint levels of detail. TheOverview + Detailmethod [118] is commonly used, due to its

simplicity. It is similar to the Simple Pan + Zoom techniques, with the addition of anoverview win-

dow that shows a highly demagnified, low detail version of the entire visualisation. The overview

window may or may not obscure part of the detail window. A visual cue, usually in the form of

a rectangle, is shown on the overview to indicate the location of the detail view. This provides

orientation in the same way as “You are here” markers on maps. This cue may be strengthened with

the use oftethersjoining the corners of the detail window with the corners of its rectangle in the
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overview window. For example, Figure 1.8 shows a satellite image of the city of San Francisco,

with a detailed view of the area near Union Square. The user is able to pan around by clicking in

the overview window.

The DragMag system [170], as shown in Figure 1.9, uses anInvertedOverview + Detail view,

showing the overview window occupying the whole screen, with one or more tethered detail-

windows. As with normal Overview + Detail, the user is able to navigate by clicking or dragging

in the overview-window to change the detail view. Some systems place the detail-window directly

over its location in the overview window, by taking the metaphor of holding a magnifying glass

over the visualisation. However, this strategy causes the detail-window to obscure the context in its

immediate vicinity, such as shown in Figure 1.10. For this reason, the DragMag system deliberately

places detail-windows a small distance away from their location in the overview-window.

Recent work has further developed the idea of tethered detail windows, particularly in 3D virtual

environments such as the GeoZUI3D browser shown in Figure 1.11. [119, 120, 121].

1.2.3 Geometric focus + context

Geometric Focus + Context is a class of visualisation techniques that show focus and context re-

gions by displaying different regions of the visualisation at varyingmagnification factors. This

causes the visualisation to bedistorted: the focus-region has a magnification of 1 (that is, it is pre-

sented at its normal size), while the context-region typically has a magnification that approaches

0 as the distance from the focus-region increases (that is, it is progressively demagnified). This

concept is formally specified through atransformation functionor magnification function. These

two functions are different, equivalent ways of expressing the same information, which is how the

context demagnification changes as the distance from the focus increases.

There are a great number of geometric focus + context techniques that have been developed.

Here, we present a review of the most fundamental and influential methods. A good survey and

taxonomy of these distortion-based approaches is presented by Leung and Apperley [93].

The Bifocal Display[146] is the earliest and simplest geometric focus + context technique in

information visualisation. It divides the screen into 9 regions, as shown in Figure 1.12. The central

focus region has no demagnification, whereas the remaining regions have constant demagnification

in thex direction,y direction or both, as appropriate. This gives the magnification function and 2

dimensional Cartesian application to a grid shown in Figure 1.13. One application of the Bifocal

Display is the Table Lens [128], and a more esoteric application is the hardware Focus + Context
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Figure 1.8: An Overview + Detail view of the city of San Francisco.

Figure 1.9: An Inverted Overview + Detail view of the city of San Francisco, such as used by the DragMag
system [170].
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Figure 1.10: Thexdvi program is an example of an Inverted Detail + Overview where the detail window
is placed directly over the overview window, leading to a loss of immediate context.

Figure 1.11: An example of tethered detail windows in GeoZUI3D. Courtesy of Matthew Plumlee and Colin
Ware [120].
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Figure 1.12: The 9 regions of a 2D Bifocal Display, from [93].

(a) Magnification function (b) 2D Cartesian

Figure 1.13: The magnification function and 2D Cartesian application of the Bifocal Display, from [93].

display device [18].

ThePerspective Wall[95] works by “projecting” the visualisation onto a specifically configured

“virtual wall”. The main focus region consists of a section of the wall in the middle, that is parallel

to the plane of the display device. To either side is the context region, consisting of the remainder

of the wall receding into the distance at an angle. Figure 1.14 shows this approach, along with

its magnification factor. The Perspective Wall adds a “3D feel” to the otherwise “flat” distortion

techniques, but it can only apply the distortion in one dimension. The user accesses the context data

by using the mouse to “scroll” the projection of the view left and right on the wall. TheDocument
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(a) Visual appearance (b) Magnification function

Figure 1.14: The visual appearance and magnification function of the Perspective Wall, from [93].

Figure 1.15: The Document Lens, from [130].
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(a) Magnification function (b) 2D Cartesian

Figure 1.16: The magnification function and 2D Cartesian application of the Graphical Fisheye View, from
[93].

Lens[130], shown in Figure 1.15, is a method of applying a perspective distortion effect in two

dimensions.

The Graphical Fisheye View[136, 137] is a Focus + Context technique that has a smoothly

varying magnification function, as shown in Figure 1.16. This means that there is no clear distinc-

tion between the focus and context regions, however, it is still true that the focus region has a higher

magnification than the context region which surrounds it. An example of a tree drawn using the

Graphical Fisheye View is shown in Figure 1.17. The central focus region is defined by thefocus

point which is always in the centre of the display. The user navigates through the data by clicking

the desired position of the new focus point. This gives the user access to the entire dataset, even

though, at any given time, the majority of the data is distorted. In addition, the transition between

focus points can be animated by linearly interpolating the position of the focus point. The name

“fisheye” comes by analogy to a fisheye lens in photography, which yields much the same distor-

tion. It was originally derived from the Generalised Fisheye View, described below in Section 1.2.4.

The Hyperbolic Browser[92] is an application of Graphical Fisheye Views to large trees; an ex-

ample is shown in Figures 1.18 and 1.19. The Hyperbolic Browser have also been extended to 3D

visualisation of large tree data [28, 104].

TheSHriMP visualisation system[148] combines graphical fisheye views with the principles of

mental map preservation and Semantic Zooming in the field of software visualisation. It also makes
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Figure 1.17: A Graphical Fisheye View of major highways in the USA [136, 137].

use of nested graphs in a similar way to that described below in Section 1.2.4.

Focus + Context techniques based on Graphical Fisheye Views have proved popular, being

applied to a wide variety of problems, for instance, to long lists of menu items [20], and to Internet

search engine results [113].

It is interesting to note that these techniques bear more than a passing similarity to some of the

works of M. C. Escher. In particular, Graphical Fisheye Views use a similar geometric distortion

to that in ‘Balcony’, shown in Figure 1.20, and also ‘Hand with Globe’, ‘Still and Reflection with

Globe’ and ‘Three Spheres’. The Hyperbolic Browser was originally inspired by Escher’s ‘Circle

Limit IV’, shown in Figure 1.21.

1.2.4 Non-geometric focus + context

It is possible to achieve Focus + Context by strategically hiding, oreliding, context data, rather than

by geometrically distorting it.

The seminal work in Focus + Context is Furnas’sGeneralised Fisheye Viewsand associated

Degree of Interest (DOI)andA-Priori Interest (API)measures [58, 59]. Here, he was concerned
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Figure 1.18: A Hyperbolic Browser view of an organisational chart [92].

Figure 1.19: An Inxight StarTree [79] view of the LexisNexis online sources [94].
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Figure 1.20: M.C. Escher’s “Balcony” (c) 2004 The M.C. Escher Company - The Netherlands. All rights
reserved. Used by permission.

Figure 1.21: M.C. Escher’s “Circle Limit IV” (c) 2004 The M.C. Escher Company - The Netherlands. All
rights reserved. Used by permission.
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Figure 1.22: An example of a Generalised Fisheye View on a section of C source code [59]. The left margin
contains line numbers and elipses ‘...’ for lines that are representative of hidden lines.

with textual listings of program source code, and elided the contents of control structures and func-

tions that the user was not currently interested in, while still providing a visual indication of their

existance. For example, anif statement may be shown with its condition, but not the code that ex-

ecutes when it is true. Figure 1.22 shows an example of this. Furnas’s work was highly influential,

and most Focus + Context systems use some of the ideas and concepts he presented.

Although the majority of research in Focus + Context techniques since Furnas’s original pre-

sentation has emphasised its geometric or graphical nature, there are two techniques that combine

non-geometric and geometric Focus + Context techniques. The first is Noik’s “clustered graph

fisheye view”, and the second is the family of Variable, Continuous and Intelligent Zooming tech-

niques.

Noik’s clustered graph fisheye view[108, 109, 110, 111] applies Furnas’s Degree of Interest to

clustered graphs, using this as the basis of a graphical fisheye view. The result is a visualisation that

resembles a geometrically distorting fisheye view, except that the focus and context magnifications

are based on the graph theoretic distance between nodes, rather than the Euclidean distance. As

such, there is no explicit magnification function: a notable distinction to geometric Focus + Context

techniques. An example of this type of view is shown in Figure 1.23.

TheVariable Zooming[138], Continuous Zooming[12, 14, 33] andIntelligent Zoomingtech-

niques [11, 13] introduce the idea of using thecluster hierarchyof a clustered graph as the main
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Figure 1.23: An example of Noik’s clustered graph fisheye view [110].

(a) All clusters open (b) Cluster C closed

Figure 1.24: An example of the Continuous Zoom system [12]. Notice that closing cluster C has the effect
of hiding nodes c1 and c2, as well as increasing the sizes of nodes a1, a2, a3, b1, b2 and b3 since more space
is available to them.

basis for controlling the level of detail in the Focus + Context system. The clustered graph is ob-

tained by supplementing a graph with a hierarchical grouping, orclustering, of its nodes. These

clusters may beopen, to show the detail of the nodes within, orclosed, to hide this detail. This

work was applied to the domain of control system supervision, and the sizes of the nodes adjusted

according to a Degree of Interest function similar to Noik’s, in order to highlight the relative impor-

tance of nodes. In addition, when nodes became large enough to support it, relevent low-level detail

of the control system sensors (such as time-series temperature data) is embedded within nodes,

and thus also incorporates elements of Semantic Zooming. Figure 1.24 shows an example of the

Continuous Zoom system.

Similar systems for viewing nested graphs in 3D (though without any further Focus + Context
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considerations) have been developed [39, 114].

1.2.5 Animation

For the purposes of this thesis, ananimationis a sequence of still images, known asframes, that give

rise to the illusion of motion when displayed in rapid succession. While the difference between any

two successive frames is small, it is structured such that the overall difference is seen over time as

motion. This phenomenon isapparent motion, and is the basis of the frame-based motion exhibited

in cinema, television and computer displays. The speed at which the frames are displayed is the

frame rate, and is expressed in the number offrames per second(fps) or sometimes the time between

frames (in milliseconds). Animations are symmetric in time, and thetime-reversedversion of an

animation is easy to construct, simply by reversing the order in which the frames are displayed.

Animation can exhibit subtle problems not normally found in static visual presentations [166].

For example, the illusion of motion breaks down at about 10 fps, and 25 fps is generally agreed

upon as a reasonable minimum frame rate. In addition, since frames may be a discrete sampling

of an otherwise continuous motion, sampling effects known astemporal aliasingmay occur. This

is sometimes referred to as thewagon wheel illusion, in reference to the particular case where the

wheel of a wagon appears to be spinning backwards when the wagon is travelling at certain speeds.

Motion has several beneficial uses in information visualisation. One of the most important

is preserving the mental map during transitions between visualisations [21, 54, 55]. It has also

been explored for highlighting the results of queries [15, 167] and aiding depth perception of 3D

displays on 2D display devices [169]. A comprehensive taxonomy of motion-uses, in information

visualisation, is given by Bartram in [16].

1.3 Aims

The Geometric Focus + Context techniques, particularly the Graphical Fisheye View and Hyper-

bolic Browser, are useful and common applications of the Focus + Context paradigm. They have

the following benefits.

High Detail Focus: A small subset of the data is shown in the focus region with

nearly no visual compression, allowing it to have high detail. This reflects the

fact that the focus region shows the data the user is most interested in.
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Complete Context: The remainder of the data is shown in the context region with a

large degree of visual compression. This means that the normalised data con-

tent is 1 (even though the context region has low detail), providing complete

context to the user.

Natural Metaphor: The metaphor employed by geometric Focus + Context tech-

niques involves either lens- or perspective-based distortion functions, both of

which are readily understood in the physical world.

Animated Navigation: The navigation operation, relocating the geometric focus

point, is easily animated by presenting intermediate frames for interpolated

focus points between the initial and final focus points.

Continuous Focus–Context Transition: The spatial transition between focus and

context regions is continuous. This means that connections between data ele-

ments in the focus and context regions are preserved, supporting navigation.

In some geometric Focus + Context techniques, such as the Fisheye View and

Hyperbolic browser, the transition is also smooth (c.f. Bifocal Display).

The first two benefits, High Detail Focus and Complete Context, are the main advantages, and are

the reason Geometric Focus + Context techniques are frequently used for the visualisation of large

datasets. The main disadvantages of Geometric Focus + Context techniques are as follows.

Low Focus Data Density: Although the focus region is the area with the highest

detail, and is the user’s area of interest, it is frequently the case that the data

content in this region is low. This problem is clearly visible in Figures 1.18

and 1.19.

High Context Data Density: As a result of visually compressing a large amount

of data into the relatively small context region, this region often suffers from

high density. This results in a crowded display with a high visual complexity.

This is often compounded by aliasing effects, which are more pronounced due

to the small number of pixels used per graphical object in the context region.

Semantic zooming can help alleviate this problem by choosing low detail

representations of sections of the context, or by eliding parts of it completely.

This problem is clearly visible in Figures 1.17, 1.18 and 1.19.
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Poor Spatial Properties: The introduction of a geometric distortion removes many

of the properties which are present in undistorted visualisations. For example,

relative orientations of data items may not be preserved, distance metrics de-

pend on the location of the focus point, the transformation may not be affine,

and area is never preserved. Figure 1.17 shows these problems; since this di-

agram shows a Cartesian Fisheye View, it is not as poor as diagrams that use

radial Fisheye Views.

Difficult Multiple Foci: The presentation of more than one focus region is fre-

quently difficult, and substantially more complicated, than the single focus

case. This is covered in more detail in [93].

The motivation for this thesis is to determine a Focus + Context method that incorporates the

best aspects of Geometric Focus + Context techniques while avoiding the problems. We introduce

Structural Zooming, a Focus + Context technique with the central theme that displaying the data of

the context region at lower detail (that is, at a higher level of abstraction) is preferable to geometri-

cally distorting all of the context data. This can be thought of as “abstracting” or “summarising” the

context, allowing the user to see a brief summary of its contents and its relation to the focus region.

The solution presented by Structural Zooming must address all the problems with Geometric

Focus + Context, without compromising any of its advantages. Thus, we aim for a solution that has

these advantages over Geometric Focus + Context:

Mixed Detail View: The data is shown at a combination of high and low detail, as

appropriate. This supports a Focus + Context type of visualisation.

Uniform Magnification: All data is displayed at the same magnification level: this

makes it easier to read data in the context region and compare it with that in

the focus region.

Constant Visual Complexity: The complexity of the view presented is kept ap-

proximately constant. This helps to overcome the problems of Low Focus

Data Density and High Context Data Density. “Visual complexity” is ex-

plained in more detail in Chapter 3, but an illustrative example is shown in

Figure 1.25.
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(a) Full tree

(b) Focusing on node B1 (c) Focusing on node D2

(d) Focusing on nodes B1 and D2

Figure 1.25: An example of the meaning of “constant visual complexity”. When “focusing” on a node, it
is shown with its descendant nodes, siblings and ancestors. (a) shows the full tree. (b) shows the view where
the user has focused onto node B1; 11 nodes are visible. If the user then chooses to shift the focus to node
D2, the view may shift to that shown in (c). In this case, the node B1 and its descendants have been hidden
so that there may still be only 11 nodes visible, and so the visual complexity has been preserved (to some
approximation, at least). This is in contrast to (d), where the focus is with node D2 but without removing the
previously focused node B1. This case has 20 nodes, which is approximately twice as many as (b) and (c).
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Implicit Focus and Context Regions: The focus and context regions are not spec-

ified explicitly as they are in geometric zooming. The focus-region is simply

that occupied by the focus data, and similarly for the context region. This

allows these regions to move and rearrange as necessary.

Leverages Existing Techniques:Existing standard algorithms and techniques are

used for data layout, with their benefits being applied to the mixed detail

focus + context data. For example, possible algorithms include graph drawing

algorithms and space-filling techniques such as treemaps. This ensures good

aesthetics and high quality layout, which sometimes cannot be guaranteed in

geometric distortion.

Uniform Spatial Density: In many situations, uniform magnification, implicit fo-

cus and context regions, and the use of existing techniques mean that the

geometric zooming problems of low focus density and high context density

are overcome.

Structural Zooming is most closely related to Continuous and Intelligent Zooming, which are

in turn related to Generalised Fisheye Views and Semantic Zooming. Structural Zooming supports

multiple levels of detail (such as by opening and closing clusters) in a similar way to Continuous

and Intelligent Zooming, but does not geometrically distort the sizes of the nodes. Like Generalised

Fisheyes, it does not use geometrically-based magnification, but unlike them it does not require

explicit DOI or API measures. It uses distinct high and low detail representations of data in the

same way as Semantic Zooming, but in addition it allows different spatial regions of the display to

be seamlessly shown at different levels of detail. It is also driven by the user’s logical navigation,

rather than by a simplistic magnification factor as Semantic Zooming is.

1.4 Research methodology

As the detail-context tradeoff is a fundamental problem in visualisation, its solutions tend to be ap-

plicable to many different types of visualisations. The research methodology followed is primarily

empirical in nature. It consists of three broad stages,design, implementationandvalidation. The

Structural Zooming technique is designed in two distinct levels. The first addresses the problem

in a general, visualisation-independant setting. This presentation allows a visualisation designer to
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adapt the Structural Zooming technique to any particular type of visualisation. This general presen-

tation is then used to design a method of Structural Zooming for relational data, specifically, trees

and clustered graphs. This method for the Structural Zooming of relational data is implemented

in a system which allows the method to be experimentally validated and evaluated. This validation

is performed in an application-based context, using datasets from three particular domains. The

criteria for evaluation is a collection ofquality measures, each of which quantitatively captures the

essence of a desirable visualisation property. This allows the performance of Structural Zooming to

be observed as input parameters are changed individually.

1.5 Contributions

This section briefly describes the main contributions of this thesis and where each may be found.

• An empirical investigation into the definition of the “size” of a rectangle that is most

useful for inclusion tree diagrams is presented in Section 2.3.

• A framework for determining the visual complexity of a visualisation is presented in

Section 3.1.

• The technique of Structural Zooming is defined and presented in a general, visualisation-

independant way in Chapter 3.

• Structural Zooming is applied to the Focus + Context visualisation of relational data

in Chapter 4. Methods for two types of relational data are presented, trees and clus-

tered graphs. Structural Zooming of trees is presented in the traditional node–link

style and in inclusion style.

• A “stable” version of the Jewellery Box Inclusion Layout Algorithm is presented

in Section 4.2.1. This attempts to minimise changes and preserve the orthogonal

ordering of arbitrary inclusion tree layouts.

• A method for the animation of orthogonal edge layouts is presented in Section 4.3.

• Measures for determining the quality of animated transitions in Structural Zooming

of trees and clustered graphs are presented in Section 4.4.



1.6 Organisation of the thesis 29

• Methods for automating the generation of “navigation paths” in Structural Zooming

of trees and clustered graphs are presented in Section 4.5. Navigation paths are use-

cases for Structural Zooming, and are important for evaluation.

• An empirical investigation into Structural Zooming of relational data is presented,

using data from the three application areas of Design Behaviour Trees (Chapter 5),

Software Views (Chapter 6) and Citation Networks (Chapter 7). The results of this

investigation are discussed and interpreted in Chapter 8.

1.6 Organisation of the thesis

Chapter 2 presents background aspects of the relevant areas of research, providing the pertinent

terms, definitions, concepts and results that are required for the remainder of the thesis. Chapter 3

presents the concepts and model for the general technique of Structural Zooming of arbitrary visu-

alisations. Chapter 4 shows the application of Structural Zooming to relational information — in

particular, trees and clustered graphs. Chapter 5 presents the first application of Structural Zooming

to a concrete type of data, that of Design Behaviour Trees. Chapter 6 presents the second applica-

tion, that of views of software systems. Chapter 7 presents the third and final application, that of

citation networks. Chapter 8 discusses and interprets the results from the three preceeding chapters.

Finally, Chapter 9 sets out the thesis’ concluding remarks. Appendix A contains a description of

the contents of the CD-ROM accompanying this thesis.

A large part of this thesis is concerned with animations, and as such, it makes use ofanimated

figuresto show illustrative animations that support the text. Since it is not possible to show motion

on paper, these figures appear in the printed form of this thesis as a matrix of frames. Additionally,

the electronic PDF version embeds the animated figures using theanimfig package [122]. This

allows interactive playback of the animations in PDF viewers that support Acrobat PDF Javascript,

such as the freely available Adobe Acrobat Reader, using a method based on that described in [72].

These embedded animations are accessed by clicking on the static matrix of frames. The electronic

version is provided on the CD-ROM accompanying this thesis, described in Appendix A, and on

the World Wide Web athttp://www.kev.pulo.com.au/thesis/ .

Portions of the material presented in this thesis have been published in [123] and [124]. The

author of this thesis was the primary author of both papers, with the co-authors providing direct

supervision.

http://www.kev.pulo.com.au/thesis/
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C H A P T E R 2

Background

This chapter introduces background material for the types of data on which this thesis focusses,

namely, trees and clustered graphs. Section 2.1 introduces basic concepts and definitions, while

Section 2.2 reviews methods for automatically drawing trees and clustered graphs. Section 2.3

presents the results of an empirical investigation into a specific design parameter for the layout of

certain types of trees.

2.1 Basic concepts

This section describes the main relational data structures considered in this thesis, that is, trees and

clustered graphs. Methods of visual presentation are given, and the relationship between trees and

clustered graphs is explained.

2.1.1 Trees

‘Trees’ are fundamental data structures that are ubiquitous throughout all areas of computer science

and information systems, as well as many of the physical and empirical sciences. For example, in

the field of operating systems there are process-trees [83] and filesystem B-trees [29], in databases

there are query-trees [163], in languages there are parse and expression-trees [4], and in geographic

information systems (GIS) there are various spatial data structures such as quadtrees, PR-trees and

k-d trees [132, 133].

A tree(more correctly, arooted tree) is defined recursively as a nodev and a collection ofchild

trees, that is,

T = (v, {T1, T2, ..., Tdv})

whereTi are similarly defined trees. The set of all nodes is denoted byV . The nodesv1, v2, ...,vm
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are thechildrenof v, andv is theirparent. Two nodesu andv with the same parent aresiblings.

The set of children of a nodev is denoted byC(v), and the number of childrendv = |C(v)| is the

degreeor branching factorof v. Nodes that havedv = 0 (that is, no children) areleaf nodes, and

nodes which havedv > 0 arenon-leaf or internal nodes. The node ofT which is not a child of

any other node is theroot node, denoted asr. A binary treeis one in which the degree of every

internal node is at most 2.

The relationship between a parent nodeu and its childv is theedge(u, v). The set of all edges

in the tree is denoted byE. A pathis a list of nodes(v1, v2, ..., vm) such that(vi, vi+1) ∈ E ∀ 1 ≤

i ≤ m− 1. A nodeu is anancestorof v if it is possible to reachu from v by traversing only parent

edges, andv is then adescendantof u. The set of ancestors of a nodev is denoted byA(v), and the

set of descendants byD(v).

There are two broad styles for the visual representation of trees. Traditionally, trees have been

drawn using thenode-linkstyle, which is still the most common style in use today. In this style,

tree nodes are drawn as closed connected regions in the plane, and edges are drawn as lines (with

or without arrow heads) connecting the node regions. Several algorithms have been devised for

drawing trees in the node-link style, including the famous Reingold-Tilford [129] algorithm which

arranges nodes on horizontal layers. More formally, a node-link layout of a treeT defines a region

Ru in the planeR2 for each nodeu and a curveL(u, v) for each edge(u, v), such that:

• No two node regions overlap, that is,Rv ∩Rw = ∅ ∀ v, w.

• For all edges(u, v) ∈ E,Ru is connected toRv by the curveL(u, v).

The curveL(u, v) is simply a line, which may be curved or straight and may consist of one or more

connected segments. These curves may or may not have arrowheads; if so, the arrow is directed

toward the child node. These curves are described in more detail in Section 2.1.2.

The inclusionlayout style [44] is an alternate method of drawing trees, where the parent–child

relationship is visually represented by the closed geometric region of the child node being com-

pletely contained within the region of the parent node. More formally, an inclusion layout for a tree

T defines a regionRu in the planeR2 for each nodeu of T , such that:

• If w ∈ C(u) thenRw ⊂ Ru.

• If v ∈ C(u) andw ∈ C(u), thenRv ∩Rw = ∅ (that is, siblings do not overlap).
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• If v ∈ C(u) andw ∈ C(u), thend(p, q) ≥ δ ∀ p ∈ Rv and q ∈ Rw whered(p, q) is

the Euclidean distance metric between pointsp andq (that is, siblings are separated

by a minimum distance ofδ).

Non-leaf nodes are usually drawn in a manner that is visually distinct from leaf nodes, known as

containers, which emphasises their role of grouping sibling nodes.

The overall size of a layout is determined by the size of thebounding box, which is the smallest

isothetic rectangle1 R such thatRu ⊂ R ∀ u ∈ T andL(u, v) ⊂ R ∀ (u, v) ∈ E. Although the

layout itself may be any general region, we take the bounding box to reflect the fact that ultimately,

the layout must be presented on a standard rectangular computer display or sheet of paper. The

regionRu for each node may be freely chosen, and is usually done in order to accommodate the

display of thelabelof the node, which may, for example, be text, an image or a collection of shapes.

The overall size of an inclusion layout is simply by the bounding box aroundRr. This study

is interested in tree drawings that minimise the size of the overall layout while preserving some

aesthetic criteria, such as no overlaps between nodes. Minimising the size of the layout ensures that

the amount of detail shown on-screen is maximised.

In most practical systems, node regions are only permitted to be isothetic rectangles. This is

because most node labels are text or images — both of which are best represented within rectangles.

In the situations where this is not the case, it is still possible to use the bounding box of the actual

node label. In addition, the use of rectangles considerably simplifies the analysis of the problems

and algorithms. For these reasons, this thesis deals only with the case of node regions that are

isothetic rectangles.

Figure 2.1 illustrates an example tree in both the node-link and inclusion styles.

An antichainof a tree2 is a set of nodesN such that no ancestor–descendant relationship exists

between any pair of nodesu, v ∈ N . A maximal antichainis one in which the addition of any other

node toN would cause it to no longer be an antichain. It is easy to see that any antichain can be

extended to be a maximal antichain, thus, hereinafter, antichains are assumed to be maximal, unless

otherwise noted. Abranchis a path from the root node to a leaf node: clearly, there is exactly one

branch for each leaf node. It is also easy to see that an antichain intersects every branch once (that

is, exactly one node in every branch is inN ) [5]. As such, an antichain may be considered to be a

1An isotheticor orthogonally-alignedrectangle is one with sides parallel to thex andy axes.
2Antichains are expressed more formally by representing the tree as apartially ordered set, or poset. However, such

a treatment is unnecessarily general and this thesis considers only antichains of trees. Refer to Aigner [5] for a complete
combinatorial treatment.
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(a) Node-link Layout Style (b) Inclusion Layout Style

Figure 2.1: An example tree in node-link and inclusion layout styles.

Figure 2.2: An example antichain of the tree shown in Figure 2.1.
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“horizontal cut” through a top-down node-link drawing of a tree, as illustrated in Figure 2.2.

An abridgementof a tree is the visualisation of an antichain. The antichainN partitions the tree

into two groups,

Vs = {v | v ∈ N or v ∈ A(u) for some u ∈ N}

Vh = {v | v ∈ D(u) for some u ∈ N}.

Thus,r ∈ Vs, Vs ∩ Vh = ∅ andVs ∪ Vh = VT . The setVs is the set ofshownnodes, andVh is the

set ofhiddennodes. When displaying the abridgement, only nodes inVs are drawn, and the nodes

in Vh are said to have beenhiddenor elided. The non-leaf nodes of the antichain areinduced leaf

nodesof the abridgement, more simply known ascollapsed nodes. Non-leaf nodes inVs but not in

N areexpanded nodes.

Abridgements may be shown in either node-link or inclusion style. However, in the inclusion

style, collapsed nodes are not drawn as containers, rather, they are drawn with the same visual rep-

resentation as leaf nodes. In order to distinguish collapsed nodes, we use the convention of adding

a visual cue to indicate that the collapsed node is a “representative” of its hidden descendants. Fig-

ure 2.3 shows the abridgement associated with the antichain from Figure 2.2, in both node-link and

inclusion styles.

Another way to look at abridgements is through the use of logicalopenandcloseoperations

on nodes. Closing a node corresponds to moving its descendants fromVs to Vh, and opening

a collapsed node corresponds to moving its immediate children fromVh to Vs. As discussed in

Chapter 4, these operations form the basis for the navigation of relational data presented in this

thesis.

This thesis is primarily concerned with the inclusion layout style, due to the strong relationship

between inclusion layout and clustered graphs, which are discussed in Section 2.1.2. However,

some consideration is given to a particular type of node-link layout in Section 2.2.1.

Whereas the size of any node in the node-link style is free, the size of a non-leaf node in the

inclusion style depends primarily on the sizes of its children and how their positions are arranged.

The rectangle for a non-leaf node in the inclusion style is generally given by the bounding box of

its children, with some additional space for the node label.

The fundamental problem for inclusion layout is as follows:

Minimum Inclusion Layout Problem (MILP): Given a treeT and a widthXv and
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Vh

Vs

(a) Abridgement

(b) Node-link (c) Inclusion

Figure 2.3: The abridgement associated with the antichain from Figure 2.2. The small “+” glyph in the
corner of a node indicates it is collapsed.
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Figure 2.4: A tree which shows that MILP is reducible to the 2 dimensional bin packing problem.

heightYv for each leafv of T , find a minimum size inclusion layout forT such that for

each leafv, the dimensions ofRv areXv × Yv.

However, there are several possible ways to define the “size” of a rectangle, and hence the size of a

tree layout. For a rectangle of widthx and heighty, some possiblesize measuresare:

• area:ψ(x, y) = xy

• perimeter:ψ(x, y) = x+ y

• minimum enclosing square:ψ(x, y) = max(x, y)

• square aspect ratio:ψ(x, y) =
∣∣∣xy − 1

∣∣∣
Note that the minimum enclosing square and square aspect ratio measures can easily be generalised

to an arbitrary aspect ratior, which is useful for non-square output regions (for example, many

desktop computer displays haver = 4/3).

• minimum enclosing rectangle:ψ(x, y, r) = max(x, ry)

• aspect ratio:ψ(x, y, r) =
∣∣∣xy − r

∣∣∣
For simplicity, this study only considers the square (r = 1) cases. Section 2.3 shows that for the

purposes of the argument, the minimum enclosing square size measure is the most appropriate.

If the tree in which every non-root node is a leaf, shown in Figure 2.4, is considered, it can be

seen that MILP is equivalent to the 2 dimensional bin-packing problem, and is thus NP-hard [96].

Approaches for solving MILP are examined in Sections 2.2.1 and 2.2.2.
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(a) Directed (b) Undirected

Figure 2.5: An example directed and undirected graph.

2.1.2 Clustered graphs

Graphs

Graphs, like trees, are commonplace in a wide variety of areas within computer science and many

other applications and domains. Graphs are useful for modellingrelational data, that is, data that

involvesentitiesor objects, and binaryrelationsbetween them. For example, graphs — and the

automatic visualisation of graphs, known asgraph drawing[32] — are useful for metabolic path-

ways in the field of bioinformatics [98], circuit schematics in VLSI [10], visibility graphs for path

planning in robotics [142], network flow graphs in transportation routing problems [29], neural and

belief networks in artificial intelligence [131], fund manager flow graphs in finance [38], as well as

a multitude of applications in software engineering [67, 73, 84, 102].

A graphG = (V,E) is a set ofnodes(or vertices) V and a set ofedgesE, where an edge is

a pair of nodes, that is,E ⊆ V 2. A graph may bedirected, in which case an edge is an ordered

pair of nodes, or a graph may beundirected, in which case the pair of nodes is unordered. Graphs

are almost always visually represented as node-link diagrams. Naturally, the edges in directed

graphs have arrowheads, while those in undirected graphs do not. Figure 2.5 shows an example of

a directed and an undirected graph.

Two nodesv1 and v2 are connectedor adjacentif ∃e ∈ E such thate = (v1, v2), that is,

(v1, v2) ∈ E. The edgee = (v1, v2) is incidentto nodesv1 andv2, and in a directed graph,v1 is

called thesourcenode ofe, andv2 is thetargetnode. Thedegreeof a node is the number of edges
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incident to it. For directed graphs theout-degreeof a node is the number of edges for which it is a

source node, and thein-degreeis the number of edges for which it is a target node. Apath is a list

of nodes(v1, v2, ..., vm) such that(vi, vi+1) ∈ E ∀ 1 ≤ i ≤ m− 1. A cycleis a path(v1, ..., vm)

such that(vm, v1) ∈ E. An undirected cyclein a directed graph is defined similarly, except that it

ignores the direction of the edges, that is, it only requires

• Adjacency betweenvi andvi+1, that is,(vi, vi+1) ∈ E or (vi+1, vi) ∈ E.

• Closure of the cycle, that is,(vm, v1) ∈ E or (v1, vm) ∈ E.

A graph isconnectedif a path exists between all pairs of nodes, anddisconnectedotherwise.

A tree may be defined as an undirected connected graph which contains no cycles, or as a

directed connected graph which contains no undirected cycles and an in-degree of each node of at

most 1. This definition also permitsunrooted trees, also known asinfinite trees, which have no

distinguished root node. This definition implies that a rooted tree withn nodes must have exactly

n− 1 edges, and has the corollary that a graph withn nodes and more thann− 1 edges cannot be

a root tree [172].

Clustered graphs

A clustered graphC = (G(VG, EG),H(VH , EH)) is anunderlying graphG with an additional

cluster hierarchytreeH. The nodes of the underlying graph are the leaf nodes of the cluster

hierarchy, and soVG ⊂ VH . The remaining nodes are calledcluster nodes. The edge setsEG and

EH are disjoint, that is,EG ∩ EH = ∅, sinceEG contains only edges between underlying graph

nodes, andEH contains only edges between cluster nodes or edges between cluster nodes and graph

nodes. The cluster hierarchy defines a recursive grouping, orclustering, of the nodes ofG— hence

the name “clustered graph”. Clustered graphs are drawn in a similar fashion to normal graphs, but

with the restriction that the nodes ofH must be drawn using the inclusion layout style, that is,

child graph and cluster nodes must be drawn within their parent. As with the inclusion layout style,

cluster nodes are drawn as containers to emphasise their role of grouping cluster and graph nodes.

Figure 2.6 shows an example clustered graph with its corresponding underlying graph and cluster

hierarchy. This definition of clustered graph layout differs from the model presented in [47] which

concentrates on the concept ofc-planarity: a condition where edges are additionally not allowed to

intersect clusters with which they have no relationship.Compound graphs[135, 151] andhigraphs

[70] are both more general graph models than the clustered graph model presented here; among
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(a) Clustered graph (b) Underlying graph

(c) Cluster hierarchy

Figure 2.6: An example of a clustered graph, also showing the underlying graph and cluster hierarchy.
Cluster nodes begin withA–D, while graph nodes begin withE–K.
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other differences, nodes are allowed to be members of more than one cluster and edges may join

more than two nodes.

Clustered graphs may be considered to be a generalisation of normal graphs because they reduce

to normal graphs when all the graph nodes are placed within a single cluster node. This produces a

“flat” cluster hierarchy, in which every non-root node is a leaf, as shown previously in Figure 2.4.

Inclusion trees may be deemed to be clustered graphs whereEG = ∅. Alternatively, clustered

graphs may be regarded as inclusion trees with additional node-link style edges between the leaves.

This is the methodology used in this thesis — to initially approach the case for inclusion style trees,

followed by the extension to clustered graphs by considering node-link edges in addition to the

inclusion tree.

Abridgements may also be used for clustered graphs. In this case, there is the issue of how

to deal with edges incident to hidden nodes. Ameta-edgeis drawn between two nodesv1 andv2

(where either or both are collapsed cluster nodes), if an edge exists between two nodesu1 andu2

such thatu1 ∈ D(v1) andu2 ∈ D(v2) in the cluster hierarchy. This preserves the connectivity

relationships between the clusters in a natural way. Figure 2.7 shows an example abridgement of

the clustered graph shown in Figure 2.6. This definition of abridgements is effectively the same as

in Huang’s work [76], and is similar to the concepts of avisual pŕecisandhorizonpresented by

Quigley [127].

Clustered graphs can be used in many of the applications that incorporate graphs. This is of-

ten achieved by supplementing the graph with additional hierarchical grouping information, which

results in a richer model and visualisation of the data. For example, the chemical reactions in

metabolic pathways may be modelled at multiple levels of detail: the lowest level of detail would

describe the full chemical reaction at an atomic scale, whereas the highest level would involve only

compound reactions involving larger entities, such as proteins or enzymes. Fund manager flow

graphs may recursively group nodes according to a hierarchy of market sectors, thus allowing anal-

ysis of the overall flow between markets, or the flow between each of the fund-managers in a market

sector with the other market sectors. However, it is usually the case that this hierarchical group-

ing information is not able to be easily and clearly represented in standard (non-clustered) graph

models. For instance, the hierarchical grouping could be represented by edges of a different type or

colour, but such a representation is not as clear as a clustered graph.
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(a) Original clustered graph (b) Abridgement

Vs

Vh

N

(c) Cluster hierarchy

Figure 2.7: An example of an abridgement of the clustered graph from Figure 2.6.
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Figure 2.8: A polyline edge layout.
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Figure 2.9: An orthogonal edge layout.

Edge layouts

Edges are usually visually represented by lines connecting the adjacent nodes. The lines may be

composed of a single straight line segment, several line segments connected in a chain (apolyline),

or may be more sophisticated, such as spline curves. In all of these cases, the edge layout is charac-

terised by a series ofcontrol points. These control points are calledbendsfor polyline edge layout,

and the straight-line edge layout case can be considered to be a special case of the polyline edge

layout where the series of bends is empty. Since the use of curved edges can considerably increase

the sophistication required for edge handling, the scope of this study is restricted to polylines.

A polyline edge layout, such as shown in Figure 2.8, is represented by a sequence of points in

the plane

((x1, y1), (x2, y2), ..., (xn, yn)).

The straight-line segments connecting bend points are referred to asedge segments. An orthogonal

edge layoutis a polyline edge layout in which all the edge segments are parallel to either thex

axis (horizontal segments) or y axis (vertical segments), as shown in Figure 2.9. Orthogonal edge
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Figure 2.10: An example of an ambiguous orthogonal edge layout between nodes A and B with self-
intersecting and self-occluding possible actual layouts. In (b) the order of the bends isAdcbB, and in (c) the
order of the bends isAabcdaB. The segment coordinates in (b) are(x=0, y=0,−2, 1,−1,−1), whereas in
(c) they are(x=0, y=0,−1, 1,−2, 0,−1,−1).

layouts have the form

((x1, y1), (x1, y2), (x2, y2), (x2, y3), (x3, y3), ..., (xn, yn)),

or ((x1, y1), (x2, y1), (x2, y2), (x3, y2), (x3, y3), ..., (xn, yn)),

which is abbreviated to

(x=x1, y=y1, x2, y2, x3, y3, ..., xn, yn),

where it is understood that this ordered list of coordinates alternates betweenx andy coordinates.

An orthogonal edge layout withk segments is oflengthk, and is specified byk + 2 coordinates.

This means that the set of all orthogonal edge layouts of lengthk is Rk+2.

An orthogonal edge layout is said to beambiguousif it is visually indistinguishable from an-

other orthogonal edge layout (ignoring direction), or if it appears that its segments do not alternate

in x andy. This ambiguity arises from the visual representation of an edge layout as a sequence

of connected straight-line segments. For clarity, when discussing ambiguous orthogonal edge lay-

outs, small circles are drawn at bends, arrowheads drawn on edge segments, and the segments are

labelled with numbers indicating their order.

An orthogonal edge layout isself-intersectingif two or more edge segments intersect, and is

self-occludingif two or more bends are coincident, or two or more segments share an intersection

greater than a single point. An orthogonal edge layout is ambiguous if it is self-intersecting or self-

occluding. Examples of ambiguous orthogonal edge layouts are shown in Figures 2.10, 2.11 and
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Figure 2.11: An example of an ambiguous orthogonal edge layout between nodes A and B with two self-
occluding possible actual layouts. In (b) the order of the bends isAdcbaefB, and in (c) the order of the bends
is AabcdefB. The segment coordinates in (b) are(x=0, y=0,−2, 1,−3, 0,−1, 1, 0), whereas in (c) they are
(x=0, y=0,−3, 1,−2, 0,−1, 1, 0).
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(b) Alternate

Figure 2.12: An example of an ambiguous orthogonal edge layout between nodes A and B. In (b) the order
of the bends isAabcdB, whereb andc are the same point, causing the 3rd segment to have 0 length (and
thus be degenerate). The segment coordinates are(x=0, y=0, 1,−1, 1, 1, 2).

BA
(1,0)(0,0) (2,0)

(a)

A
(1,0)(0,0)

B
(1,−1)

(b)

Figure 2.13: Two degenerate orthogonal edge layouts. The edge in (a) has value(x=0, y=0, 1, 0, 2), that
is, bends at points((0, 0), (1, 0), (1, 0), (2, 0)). Note the doubly repeated bend at(1, 0). The edge in (b) has
value(x=0, y=0, 1, 0, 1,−1), that is, bends at points((0, 0), (1, 0), (1, 0), (1, 0), (1,−1)). Note the triply
repeated bend at(1, 0).
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(a) Horizontal (b) Vertical

Figure 2.14: Horizontal and vertical inclusion tree layouts.

2.12.

An orthogonal edge layout isdegenerateif it has any segments of zero length and is not am-

biguous. Figure 2.13 shows two examples of this.

2.2 Layout

This section describes the approaches taken for the automatic layout and drawing of trees and

clustered graphs. The general strategy is to solve the problem for trees in the inclusion layout style,

and then to consider the layout orrouting of clustered graph edges in the presence of the inclusion

cluster hierarchy. This is because the focus of this thesis is on the strategy used for navigation,

rather than the particular layout algorithms and techniques used.

2.2.1 H-V layout

An h-v layoutis an inclusion tree layout in which all sibling nodes are aligned either inx or y, that

is, either horizontally or vertically, as shown in Figure 2.14. This section reviews the h-v layout

material presented in [44], including algorithms, strategies and results.
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Inclusion layout style

The minimum inclusion layout problem described in Section 2.1.1 is NP-hard even for binary trees

[44]. By restricting the possible arrangements of nodes, it is possible to use polynomial time binary

tree algorithms that may be easily extended to general trees. Section 2.2.2 shows a polynomial time

approach for MILP which removes the h-v constraint.

The simplest h-v layout algorithm is the greedy algorithm. This traverses the tree in a post-

order fashion, from the leaves up to the root, and for each node chooses either horizontal or vertical

arrangement based on which is locally better in terms of a given size measure. Since this decision

is made once for each node in the traversal, the greedy algorithm has a linear running time. As is

often the case with such algorithms, it is easy to find counter-examples illustrating how the greedy

algorithm may make globally poor decisions based on local conditions. For example, Figure 2.15

shows a simple counter example of a tree where the greedy algorithm (using the area size measure)

is globally sub-optimal.

An obvious optimal algorithm works by storing a list of the possible solutions for each non-leaf

node. Eachpossible solutionis a complete arrangement of the descendants of that node, specified

recursively in terms of the possible solutions of the child nodes. That is, if the set of possible

solutions for a nodev is denoted byL(v), we have

L(v) = {H(l1, l2, ..., lm) | ∀ li ∈ L(ui), ∀ ui ∈ C(v) } ∪

{V (l1, l2, ..., lm) | ∀ li ∈ L(ui), ∀ ui ∈ C(v) },

where the functionH indicates the possible solution obtained by horizontal arrangement of the

specified possible layouts, and similarly for the functionV and a vertical arrangement.

The algorithm proceeds by building these lists in a post-order fashion from the leaves up to the

root node. When completed, the root node has a list,L(r), of all possible overall solutions that are

available. This list can be traversed to find the best solution according to a given size measure,

lmin = l ∈ L(r) such that ψ(l) < ψ(l′) ∀ l′ ∈ L(r), l′ 6= l

This overall solution specifies a horizontal or vertical arrangement for every non-leaf node, which

the algorithm can implement from the leaves upward (since the leaf sizes are fixed), in order to

obtain a drawing of the solution.
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Figure 2.15: An example of the sub-optimality of the greedy approach to the minimum inclusion layout
problem. Node dimensions are indicated, gaps between nodes and margins inside non-leaf nodes have size
1. In (a), the overall area of node A is25× 18 = 450, whereas in (b) it is24× 13 = 312. Nodes B and C are
locally optimal in (a), with area of6× 16 = 96, compared to an area of10× 11 = 110 in (b). The symmetry
of the leaf nodes means that the area of A is the same irrespective of the decision to arrange nodes B and C
horizontally or vertically (in both (a) and (b)).
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Figure 2.16: Dominating rectangles, where the width of the rectangle is associated with thex value, and
the height with they value. Rectangle C dominates B. Rectangles A, B, D are non-dominating, rectangle C
is dominating.

However, such an exhaustive search is clearly inefficient in both space and time, since the

number of possible solutions for a node grows exponentially with the number of descendant nodes.

The concepts ofdominating rectanglesandnon-decreasing size measuresare used to reduce the

number of solutions to a polynomial. A rectangle(c, d) is said todominateanother rectangle(a, b)

if and only if c ≥ a andd ≥ b, as shown in Figure 2.16. A size measure isnon-decreasingin

both dimensions ifψ(a, b) > ψ(c, d) whenevera > c andb > d. All the size measures presented

in Section 2.1.1 are non-decreasing. If a possible solutionl1 of size (c, d) dominatesl2 of size

(a, b), l1 can never be included in the optimal layout for a non-decreasing size measure, since it

could be replaced byl2 to give a smaller layout. Thus, dominating possible solutions such asl1

are discarded. It is easy to modify the optimal algorithm to store only non-dominating possible

solutions, rather than all possible solutions. Further, the possible solutions are stored in order of

increasingx: note that the definition of dominating rectangles means that thex coordinates are

unique and the list is also decreasing iny. For example, in Figure 2.16 the rectangles A, B, D could

be a list of non-dominating possible solution sizes.
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(a) Node-link (b) Inclusion

Figure 2.17: The Mine Pump DBT using a node-link and inclusion layout style. This is obtained by using
the optimal polynomial time algorithm presented.

When constructing the list of possible solutions for a node, the lists of the children can be

“merged” in a fashion similar to the merge sort algorithm, since they are already sorted. Extending

the treatment for binary trees presented by Eadeset. al. [44], the algorithm maintains a list of

pointers into the lists of possible solutions for each child. The composition of the current possible

solutions is allowed only if it does not dominate the previously added solution. The appropriate

pointers are advanced in the same way as the merging of many sorted lists, and the next composition

is considered. This entire process is performed separately for horizontal and vertical arrangements,

and the results then merged again to obtain the final list of possible solutions for the node.

The number of possible solutions for any node, using this technique, is shown to be polynomial

by [44], specifically

O

(∑
v∈L

dvXv

)
,

whereL is the set of leaf nodes,dv is the depth of nodev andXv is the integer width of nodev. This

result requires integer leaf node sizes, and also depends on the widths of the leaf nodes. Neither of

these restrictions are problematic in practice.

Figure 2.17(b) shows the result of applying this inclusion tree layout algorithm to the Mine

Pump Design Behaviour Tree (DBT) in Figure 2.17(a). DBTs are discussed in Chapter 5.
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Figure 2.18: Treemap for the tree shown in Figure 2.1.

Pu

Ru

(a) Horizontal

Pu

Ru

(b) Vertical

Figure 2.19: Horizontal and vertical tip-over tree layouts.

The h-v inclusion layout style is similar totreemaps[81], a space-filling technique for drawing

trees in the plane. Figure 2.18 shows an example treemap of the tree shown in Figure 2.1. Treemaps

tend to be used more commonly where some statistical or scalar data is associated with each node,

and treemap algorithms are geared towards using and showing this data when computing the layout.

This thesis uses inclusion layouts because the emphasis is on the structure of the nodes. However,

since treemaps can be considered to be inclusion trees with no margins around the non-leaf nodes,

the ideas presented in this thesis may also be applied to treemaps.
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Figure 2.20: Possible parent placement strategies. The hatched regions indicate the additional space caused
by the tip-over style, and the regions with white background indicate the area required by the h-v inclusion
layout. In (a) and (b),a is used to indicate equal lengths.

Node-link layout style

It is possible to adapt the h-v inclusion layout algorithm to the node-link style, giving anh-v node-

link or tip-over layout style. The algorithm is identical, and the solution requires a choice of hori-

zontal or vertical arrangement for each node. However, the size of a node is computed in a slightly

different fashion, because additional space must be included for the node-link display of the parent

node. Figure 2.19 shows the horizontal and vertical tip-over layout arrangements, corresponding to

the h-v inclusion arrangements in Figure 2.14, with theRu region used by the algorithm when con-

sidering the size of nodeu. The rectanglePu is the visual representation of the nodeu, as opposed

to the enclosing container used in the inclusion layout style, and the edges are drawn as indicated.

There are several possible ways to place the parent nodePu, most notably the “centre”, “real-

centre”, “edge” and “outside” strategies. These parent placement strategies are illustrated for hori-

zontal arrangement in Figure 2.20 with the additional regions they induce (compared to the region
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(a) Centre (b) Real-centre

(c) Edge (d) Outside

Figure 2.21: The Mine Pump DBT from Figure 2.17 in tip-over layout style, for each of the four parent
placement strategies shown in Figure 2.20.

required by inclusion layout). The corresponding vertical arrangements are analogous. Thecentre

parent placement strategy places the parent halfway across the width ofRu. Thereal-centreparent

placement strategy places the parent halfway between the midpoints of the far-left and far-right

child nodes. Theedgeparent placement strategy aligns the left edges of the parent node and first

child node. Theoutsideparent placement strategy places the parent to the left of first child node.

The tip-over layout presented in [44] uses only the ‘centre’ strategy for horizontal nodes, and the

‘outside’ strategy for vertical nodes.

Figure 2.21 shows the tree from Figure 2.17 in tip-over layout style, using each of the four parent

placement strategies. Figure 2.21(d) clearly shows that the ‘outside’ strategy is a very poor parent

placement strategy, compared to the other three. It has extra additional space in both dimensions,

and guarantees at least one edge-bend for every node. This gives a layout which is much larger and

harder to read, particularly for paths of nodes with degree of 1. Of the remaining three strategies,
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‘real-centre’ appears to be the best. This is because it avoids unnecessary edge bends, especially

with paths of degree 1, and nodes with alternating horizontal/vertical arrangements, which are par-

ticularly bad in the ‘centre’ strategy. The ‘centre’ strategy also suffers from ambiguity arising from

the parent node possibly being considerably far away from the child nodes, such as with the root

node in Figure 2.21(a).

2.2.2 Arbitrary node layout

The primary problem with the h-v layouts presented in the previous section is that they do not scale

well as the degree of nodes increases. This is because, as the degree increases, both of the horizontal

and vertical choices necessarily result in layouts with extreme aspect ratios. We demonstrate this

with the following lemma and theorem:

Lemma 2.2.1 There exists a treeT with n nodes and maximum degreed such that

ψ(Rhv(r)) = O(d) = O(n)

whereψ is the smallest enclosing square size measure andRhv(r) is the region occu-

pied by the root node in the optimal h-v layout.

Consider the tree (shown in Figure 2.22) of two groups ofm nodes, each

of unit width and height. Each group of nodes is connected to a common

parent node, and these common parents are in turn connected to the root

node. This givesn = 2(m+1)+1 nodes and maximum degreed = m, thus

d = O(n). Figure 2.23 shows the three possible h-v inclusion layouts of this

tree (up to isomorphism). These layouts have sizes of(2,m), (m+1,m) and

(2m, 1), respectively (ignoring the constant margin factors between nodes).

This gives size measuresψ of m, m + 1 and2m respectively. Thus the

optimal h-v layout is the first, as shown in Figure 2.23(a), with size measure

ψ(Rhv(r)) = m = d = O(d) = O(n).

Theorem 2.2.2 There exists a treeT with n nodes such that

ψ(Rhv(r))
ψ(Ropt(r))

≥ O(
√
n)
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whereψ is the smallest enclosing square size measure,Rhv(r) is the region occupied

by the root node in the optimal h-v layout andRopt(r) is the region occupied by the

root node in the optimal inclusion tree layout. That is, a tree exists for which the h-v is

sub-optimal by a factor ofO(
√
n).

Again, consider the tree shown in Figure 2.22. The layout shown in Fig-

ure 2.24(a) places each group ofm nodes into a matrix of
√
m/2 ×

√
2m.

Thus, the overall layout has size(
√

2m,
√

2m), giving a size measure of
√

2m, which is optimal. From Lemma 2.2.1 we know thatψ(Rhv(r)) = m,

and
ψ(Rhv(r))
ψ(Ropt(r))

=
m√
2m

=
√
m

2
= O(

√
n)

This completes the proof.

In fact, this can still be true for some non-optimal layouts, such as that shown in Figure 2.24(b).

This arranges each group ofm nodes into a matrix of size
√
m ×

√
m, giving an overall layout of

size(2
√
m,
√
m) and size measure of2

√
m. Thus, the result still holds:

ψ(Rhv(r))
ψ(Ropt(r))

=
m

2
√
m

=
√
m

2
= O(

√
n)

Layouts in which the h-v property is not preserved, such as in Figures 2.24(a) and 2.24(b), are

calledarbitrary inclusion layouts.

The problem of large degree nodes can arise in real-world situations. Figure 2.25 shows the

inheritance tree structure for the core Java 2 language (version 1.4.1) [66] with 773 nodes, in a

node-link style produced using the Sugiyama-based tree drawing algorithm [152] from the Tom

Sawyer Visualization 6.0 Java Edition software [158]. It shows one node of very high degree,

java.lang.Object , which occurs as a consequence of the design of the Java language. This

node has 267 children, where the rest of the non-leaf nodes have an average of 3.6 children and a

standard deviation of 8.4 children. This indicates that there are very few nodes of high degree, and

most nodes (over 75%) have fewer than the average number of children.

Figure 2.26 shows the optimal h-v layout of this tree (using the minimum enclosing square

size measure). Figure 2.27 shows an alternative layout for this tree, this time an arbitrary inclusion

layout. The arbitrary layout is considerably smaller and has less “wasted space” than the h-v layout.

This is despite the fact that the h-v layout in Figure 2.26 is an optimal h-v layout, whereas the
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nodesm nodesm

Figure 2.22: Two groups ofm nodes, each connected to a common parent node.

(a)R(r) = (2, m) (b) R(r) = (m + 1, m)

(c) R(r) = (2m, 1)

Figure 2.23: The three possible h-v inclusion layouts of the tree from Figure 2.22 (up to isomorphism).

(a) Optimal,R(r) = (
√

2m,
√

2m) (b) Sub-optimal,R(r) = (2
√

m,
√

m)

Figure 2.24: The optimal and a sub-optimal arbitrary inclusion layout of the tree from Figure 2.22. Both of
these layouts improve on the optimal h-v layout by a factor ofO(

√
n).
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Figure 2.25: The inheritance tree structure for the core Java 2 language, in a node-link tree style.

Figure 2.26: The inheritance tree structure for the core Java 2 language, using the h-v MILP inclusion layout
algorithm. It has dimensions 22185×22992 (in arbitrary units).

Figure 2.27: The inheritance tree structure for the core Java 2 language, using a better inclusion layout
algorithm. It has dimensions 8818×2688 (in the same units as Figure 2.26).
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γ

γ

Figure 2.28: The initial state of the JBILA layout region and layout triangulation after adding the first node.

arbitrary layout in Figure 2.27 is not necessarily optimal. This shows a real-world example of

where nodes of large degree can arise, and the inadequacy of h-v layouts in such cases.

Arbitrary node layout algorithms

Now that the inadequacy of the h-v layout has been discussed, attention is turned to efficient arbi-

trary inclusion layout algorithms.

The original binary tree h-v inclusion layout [44] incorporates a treatment for drawing labels

on each node. These labels are considered to be additional nodes, thus effectively creating a ternary

tree. The layout of this is then solved as for binary h-v trees, with the addition of some extra

cases for placing the “label” node adjacent to the actual nodes, rather than in horizontal or vertical

alignment with them. This solution, though, is still basically an h-v solution. The h-v constraint has

been relaxed slightly, and it could be relaxed further, for example, by allowing two or more “rows”

or “columns” of h-v laid out nodes. However, this solution is still not as general as is desired. In

fact, it even introduces new problems, such as how to best partition the nodes into rows/columns

and how many rows/columns should be used. These problems are non-trivial, so the decision to

avoid this approach is a matter of practicality as well as elegance.

A better, more general solution to the MILP, using arbitrary layouts, is presented by Itohet al.

in their Jewellery Box Inclusion Layout Algorithm(JBILA) [80]. This algorithm was used to create

the layout shown earlier in Figure 2.27.

The algorithm works by processing each non-leaf node in a depth-first, post-order traversal,

as with previous algorithms. For each non-leaf node the child nodes are placed one at a time, in

decreasing order of size. As in Section 2.1.1, the size of a node is defined according to the smallest

enclosing rectangle size measure. The first node is simply placed at the origin(0, 0), and thelayout
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Figure 2.29: An example of the JBILA layout region and layout triangulation during the algorithm.

Figure 2.30: An example of extending the layout region.

regionis defined as the region enclosing the first node with an additional margin of sizeγ, as shown

in Figure 2.28. Thelayout triangulationconsists of aDelaunay triangulation[49, 112] with vertices

at the corners of the layout region and at the centre of each node. The algorithm attempts to place

each node at a position within the layout region such that it does not overlap any previously placed

nodes and it is wholly within the layout region. If this is not possible, then the algorithm places

the node at a position where it does not overlap with any previously placed nodes, and extends

the layout region to accommodate the placement of the node. The layout triangulation is adjusted,

as necessary, by moving the layout region corner vertices, adding a vertex at the center of the

added node, and then updating the triangulation to ensure that it is still a Delaunay triangulation.

Figure 2.29 shows an example of the JBILA layout region and layout triangulation after placing

several nodes.

When attempting to place each node, the algorithm tries a sequence ofcandidate pointsfor

placement of the node. Candidate points which do not cause the node being placed to overlap with

any previously placed nodes, are said to bevalid candidate points. Candidate points which cause

the node being placed to be contained within the layout region, are said to beinterior candidate

points. The algorithm attempts to place the node at the first candidate point which is both valid and
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Figure 2.31: An example of the interior number in the layout triangulation.

Figure 2.32: Candidate points are placed along rays from each triangle corner node through the triangle
centre.

interior. If no such candidate point exists, the algorithm places the node at the first valid candidate

point, extending the layout region as illustrated in Figure 2.30. As shown below, a valid candidate

point always exists.

Candidate points are found by searching through triangles in the layout triangulation. Triangles

are searched in order of their “interior number” and size. Theinterior numberc is defined as the

number of vertices of the triangle which are corners of the layout region. This gives possible values

c = 0, 1, 2, 3, as shown in Figure 2.313. The algorithm first searches within the group ofc = 0

triangles, then thec = 1, c = 2 andc = 3 triangles. This heuristic attempts to avoid extending the

layout region. The group of triangles with the samec value are considered in decreasing order of

size. This is because it is easier to place nodes in larger triangles than smaller ones. Here the size

of a triangle is considered to be its area.

Within each triangle, the algorithm constructscandidate raysfrom each corner point through the

3Althoughc = 3 never occurs during the algorithm.
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centre of the triangle. The centre of a triangle is taken as the centroid, although using the incentre is

also possible. Neither the circumcentre nor the orthocentre of the triangle are useful, as they do not

lie in the interior of obtuse triangles. A candidate point is found on each candidate ray by placing

the node adjacent to the corner node, and with its centre on the candidate ray. This is shown in

Figure 2.32. Candidate points that lie on the line between the corner and centre of the triangle are

considered before those that do not. The use of rays guarantees that at least one candidate point can

be found, even if it is located away from the rest of the nodes (causing the layout region to expand

considerably).

Of course, it is not desirable to have adjacent nodes touching one another; aninter-node gapof

δ is required. This is easily achieved by treating the size of node being placed to be expanded byδ

on each side.

The time complexity of the overall algorithm is dominated by the time taken to construct the

Delaunay triangulation, which isO(n log n), for n nodes. This time complexity is sufficiently small

to allow the algorithm to be used interactively on large graphs (that is, thousands or perhaps tens of

thousands of nodes).

Section 4.2.1 presents an extension to the Jewellery Box Inclusion Layout Algorithm that at-

tempts to minimise changes with respect to a previous layout of the tree (or a similar tree).

2.2.3 Orthogonal edge routing

Sections 2.1.2 and 2.2 demonstrated that a clustered graph is an inclusion tree with the addition of

edges between nodes. As such, anedge routing algorithmis required to determine the layout of

the edges in the presence of the already placed cluster hierarchy inclusion tree. In this thesis, we

are interested in the Structural Zooming technique itself, rather than the intricacies of the particular

type of edge layout or edge routing algorithm used. Thus, in order to simplify the edge routing

and the subsequent application of Structural Zooming to clustered graphs, described in detail in

Chapter 4, onlyorthogonaledge layouts are considered here.

Theorthogonal edge routing algorithmused is that provided by the Tom Sawyer Visualisation

6.0 Java Edition software [158]. It is a fast incremental layout algorithm which orthogonally routes

the edges, and ensures that there are no edge ambiguities in the resulting layout. It allows control

over whether node positions are fixed or free to move, in order to minimise crossings and bends,

and whether node sizes are fixed or free to increase, in order to maintain minimum edge spacing

requirements.
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2.3 H-V layout size measure evaluation

This section presents the first contribution of the thesis, an empirical evaluation of the choice of size

measure for h-v inclusion layouts. The four main size measures from Section 2.1.1 are compared,

namely, area, perimeter, minimum enclosing square and square aspect ratio. These results were

originally published by the author in Pulo and Takatsuka [124].

The properties used to empirically investigate the different inclusion layout size measures and

algorithms are considered first. The most fundamental is thenon-dominating function plot, which

plots the list of all non-dominating possible solutions with thex andy coordinates as the width and

height (respectively) of each possible solution.

Figure 2.33 illustrates this concept, while Figure 2.34 shows the the non-dominating function

for the tree shown in Figure 2.1. Figure 2.34 also shows the sizes of all the possible solutions as

small circles. Note, that the non-dominating function consists of the “lower-left frontier” of these

points, as the other points dominate at least one of the points which lie on the non-dominating

function. Strictly speaking, the points of the non-dominating function should not be joined in

Figure 2.33, as it is not a continuous function. However, when the non-dominating functions of

several trees are plotted on the same set of axes for comparison, drawing them as lines is more

useful than disconnected dots.

The x and y coordinates for each inclusion tree layout have been normalised based on the

largestx or y coordinate value. Consider the layout specified by the leftmost point on the non-

dominated function: this is thetallest non-dominated layout(commonly the layout with all vertical

arrangements). Similarly, the rightmost point is thewidest non-dominated layout.

Thenormalisation factoris the larger of either: the height of the tallest non-dominated layout, or

the width of the widest non-dominated layout. The corresponding layout is called thenormalisation

layout.

Figure 2.35 shows the different types of non-dominating functions possible. A general indi-

cation of the possible quality of the inclusion layout is given by the position and concavity of the

function. Layouts near the origin(0, 0) are preferable to those near(1, 1) as they are relatively

smaller (in comparison to the width or height of the normalisation layout). Layouts near the line

y = x are preferable to those near the points(1, 0) and(0, 1) as they have less extreme aspect ratios.

Trees which have non-dominating functions, similar to the “bad case” in Figure 2.35, are poor

candidates for inclusion layout. This is because there is only a small variation between the possible



2.3 H-V layout size measure evaluation 63

Width, x

Height, y

A

B

D

C

E

Figure 2.33: Non-dominating rectangles as a function. Note that asx values increase, they values decrease
(strictly) monotonically.

layouts and all havex andy dimensions similar to the maximumx or y dimension. The concavity

indicates that the layouts, with aspect ratios closer to 1, have (relatively) largerx andy dimensions.

By contrast, non-dominating functions similar to the “good case” are better candidates for inclusion

layout, as their possible layouts have a larger variation of dimensions, with some layouts having

x andy dimensions much smaller than the maximumx or y dimension (approaching the region

near (0,0)).

The next property to be examined is how the different ‘size measures’ vary with the different

non-dominating solutions. The third dimension is used to indicate the value of the chosen measure

for each layout in the non-dominating function, as shown in Figure 2.36. The “best” layout, ac-

cording to this measure, is the one with the smallestz value. However, this plot becomes harder

to read when comparing several measures, or comparing the measures of several non-dominating

functions, and so a two-dimensional variant is used as shown in Figure 2.37. Thex axis of this plot

is x − y from Figure 2.36, and is thus parallel to the linex + y = 1 in Figure 2.34. The vertical

dotted line atx = 0 corresponds to the liney = x in Figure 2.34. The dynamic programming
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Figure 2.34: The non-dominating function plot for the tree in Figure 2.1. The non-dominating function is
indicated by the solid line, while possible layout solutions are indicated by circles.

algorithm chooses the layout with the minimum value for a given measure. Animated Figure 2.38

shows how Figure 2.37 is obtained from Figure 2.36.

2.3.1 Results

This section presents the results of using the H-V inclusion layout style on two sources of real world

trees.

• Design behaviour trees(DBTs) are a method for representing requirements in soft-

ware engineering [36, 37], discussed in more detail in Chapter 5. The size of a DBT

depends on the size of the software system it describes, and may range from 20 nodes

to 500. Eleven DBTs are used in this investigation.

A typical DBT is shown in node-link and inclusion styles in Figure 2.17. One obser-

vation about these trees is that they contain many nodes of degree 1, along with the

occasional node of degree 4 or more.

• Ontologiesare formal descriptions of concepts and relationships which exist in a
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Figure 2.35: General quality of non-dominating functions.

given domain [69]. They are commonly used in artificial intelligence (AI) to support

knowledge-sharing between various AI programs or agents. Among other things, they

contain a class hierarchy for the various types of individuals defined in the ontology.

This class hierarchy is sometimes called ataxonomy, and it is this tree which we

consider for inclusion layout. Compared to DBTs, these trees tend to have fewer

nodes of degree 1 and are generally broader. Two taxonomies are considered:

– The Multi-Sensory Taxonomy (MST) presented in Nesbitt’s PhD thesis [107],

with 290 nodes.

– The Enterprise ontology [164] from the Ontolingua server at the Stanford Uni-

versity Knowledge Systems Laboratory [46], with 95 nodes. Figure 2.39 shows

the class hierarchy of this ontology in node-link and inclusion styles.

Figure 2.40(a) shows the non-dominating function plot (as shown in Figure 2.34), for all the

input trees. Figures 2.40(b)–2.40(e) show the results of the four size measures for all the input trees
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Figure 2.36: Plotting a size measure above the non-dominating function of Figure 2.34.

Tree Number of
Nodes Layouts

Integrated Low Level DBT 504 364
Multi-Sensory Taxonomy 290 216
Satellite Low Level DBT 269 468
Enterprise Ontology 95 41
Integrated High Level DBT 89 38
Mine Pump DBT 78 20

Online Shopping Low Lvl DBT 43 11
Online Shopping Med Lvl DBT 40 18
12207 Acquisition DBT 40 6
Satellite High Level DBT 33 15
Car System DBT 22 6
Online Shopping High Lvl DBT 21 2
Man Fishing DBT 17 2

Table 2.1: Sizes of the input trees (Number Nodes) and the number of non-dominating layouts (Number
Layouts), shown in decreasing order of number of nodes.
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Figure 2.37: Various size measure plots for the tree in Figure 2.1.

(as shown in Figure 2.37). Table 2.1 lists the input trees together with the number of nodes and the

number of non-dominating layouts.

In Figure 2.40(a) it can be seen that the position and concavity of the non-dominating functions

varies considerably between the input trees. Those with the best position and concavity are the

Multi-Sensory Taxonomy, Integrated High Level DBT, Enterprise Ontology, Integrated Low Level

DBT and the Mine Pump DBT. From Table 2.1 we can see that these are also the largest trees in the

input — with the notable exception of Satellite Low Level DBT. However, for tree-sizes less than

about 60 nodes, the non-dominating functions tend to be in the upper-right half of the plot (that is,

above thex+ y = 1 line) and are relatively flatter. The figure of 60 nodes is only approximate, due

to the uneven distribution of input tree sizes.

We also observe that the non-dominating functions are not symmetrical about they = x axis,

thus indicating a preference for one dimension over the other. This is due to the asymmetry of the

leaf nodes in the data used. These nodes generally contain text, giving them aspect ratios greater

than 1.

Figure 2.40(b) shows a plot of the perimeter size measure. In this plot we can see that the area

of the layout is a very bad size measure for inclusion layouts. All the trees exhibit very unstable,
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Animated Figure 2.38: Animated illustration of how Figure 2.37 is obtained from Figure 2.36.

jagged plots and are only in the region between approximately 0.5 and 1.0. In fact, some have plots

which are clearly an inverted ’U’ shape, indicating that for those trees, the layouts with minimal

area have extreme aspect ratios.

Figure 2.40(c) shows a plot of the perimeter size measure. In this plot, they coordinate is the

perimeter of the layout, that is,x + y. This corresponds to they = x axis in Figure 2.40(a), and

so what this shows is equivalent to Figure 2.40(a) “rotated” by45o, where the line withy = 1.0

and−1.0 ≤ x ≤ 0 in Figure 2.40(c) corresponds to the line withy = 1.0 and0 ≤ x ≤ 1.0 in

Figure 2.40(a), and similarlyy = 1.0 and0 ≤ x ≤ 1.0 in Figure 2.40(c) corresponds tox = 1.0

and0 ≤ y ≤ 1.0 in Figure 2.40(a). This measure is reasonably good, in that, most of trees have

a clear-cut minimum which tends to be nearx = 0 (square aspect ratio) — particularly the large

trees. This is as expected, since this plot is effectively equivalent to Figure 2.40(a).

Figure 2.40(d) shows a plot of the aspect ratio size measure. In this plot all the trees have a very

clear cut minimum atx = 0, y = 0 (with the exception of the trees with only two layouts in their
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(a) Node-link Layout Style

Figure 2.39: The Enterprise-Ontology class hierarchy.
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(b) Inclusion Layout Style (Minimum Enclosing Square)

Figure 2.39: The Enterprise-Ontology class hierarchy.

non-dominating possible solutions, Man Fishing DBT and Online Shopping High Level DBT). This

is not surprising, since the linex = 0 corresponds to the liney = x in Figure 2.40(a), the line where

layouts are square.

Figure 2.40(e) shows a plot of the minimum enclosing square size measure. In this plot it can

be seen that this measure also has a definite minimum atx = 0. This is because the minimum

enclosing square is minimised when the layout is itself square, which corresponds to the linex = 0

(y = x in Figure 2.40(a)), as in the aspect ratio size measure. However, the minimum enclosing

square size measure is preferable to the aspect ratio size measure, because it also separates the

minimum points in they axis, whereas the aspect ratio size measure collects them all aty = 0. This
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is useful, because it means that for two layouts of the same aspect ratio, the one with the smaller

edge length is chosen. For algorithms which take dominating rectangles into account, such as the

dynamic programming algorithm, this makes no difference, because the rectangle with the larger

edge length would be omitted as it is dominating, and the minimum enclosing square size measure

is equivalent to the aspect ratio size measure. However, for algorithms which do not use dominating

rectangles, such as the greedy algorithm, the minimum enclosing square size measure is expected

to be a better size measure. It also allows for easier comparison of the layout quality of different

trees, as shown in Figure 2.40(e).

In Table 2.1 we can also see that the number of possible layouts is not monotonically related to

the number of nodes. This is because the number of possible layouts, scales withO(Mn) (where

M is the sum of the widths of the leaf nodes), as described in Section 2.2.1, rather than with the

number of nodes.

Path compression

As noted earlier, the DBTs have more nodes of degree 1 than the ontologies. Nodes of degree 1 are

not well suited to the inclusion layout style, as they result in a single nested rectangle inside another.

For these paths of nodes, such nested margins add considerable visual complexity and waste screen

space, as can be seen in Figure 2.17.

A better solution for the inclusion layout style, in this case, is to compress each of these paths

of nodes into a single representative node. If desired, the representative node can be scaled by

an amount proportional to the length of the compressed path. When this occurs at leaf nodes, the

resultant inclusion layout approximates that of the original uncompressed tree.

In addition, a visual cue, such as a gradient, may be applied to the representative node, informing

the user that some information has been compressed in order to improve the visualisation. However,

when the compressed nodes contain text, an application-specific textual summary should be used

for the text of the representative node.

Figure 2.41 shows the results of applying path compression to the Mine Pump DBT from Fig-

ure 2.17(b). From Figure 2.41(a) it can be seen that the inclusion layout is simpler with paths

compressed — although a visual cue would be useful to regather some of the lost information.

Figure 2.41(b) shows the same compression, but retaining non-leaf nodes of degree 1 and scaling

nodes. No space has been saved, but the node scaling gives some information on the compressed

nodes, and may be useful where the size of leaf nodes is of interest. No text summaries have been
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Figure 2.40: Result plots for empirical data.
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(a) Inclusion layout style (minimum enclosing
square), no node scaling

(b) Inclusion layout style (minimum enclosing
square), node scaling
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Figure 2.41: Results of applying path compression to the Mine Pump DBT shown in Figure 2.17(b).
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generated for the representative nodes. Figure 2.41(c) shows that the non-dominating functions of

the compressed trees are only marginally worse than the original, and have the same basic shape.

2.3.2 Conclusion

This section has presented an empirical investigation of the inclusion layout style, based on Design

Behaviour Trees from software engineering and ontological class hierarchies derived from artificial

intelligence. Several common measures of the size of an inclusion layout have been examined. It

was found that area size is a poor measure for the inclusion layout style, and that measures which

seek to achieve a desired aspect ratio (in particular, the minimum enclosing rectangle size measure),

are more suitable.
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Visualisation Model

This chapter presents the visualisation model used in this thesis, and definesStructural Zooming

in terms of it. Section 3.1 introduces the visualisation model and defines the concept of visual

complexity. Section 3.2 describes the abstract model and requirements of Structural Zooming tech-

niques. Section 3.3 presents the methods and techniques in the application of Structural Zooming

used in this thesis. Finally, Section 3.4 explains the possible methods for evaluating Structural

Zooming, including the approach taken in this work.

3.1 Visual complexity

This section introduces concepts that provide an abstract reference framework for many of the

issues faced in large scale visualisation techniques. It is not intended to provide mathematically

precise measures for aspects of visualisations; this is supplied for the case of relational information

in Section 4.4.

A visualisationis a graphical or visual representation of part or all of the data in an underlying

dataset. The “size” of a visualisation may be measured by two intrinsic properties: the “data

content” and the “visual complexity”.

The data contentis a measure of how much of the underlying data is represented in the vi-

sualisation, in units appropriate for the type of data being displayed. Data content is quantified

by a concretedata content measure; for example, the number of nodes displayed in a tree. There

are generally many possible data content measures for any given type of data. Choosing the most

appropriate is usually an application-specific problem.

Thenormalised data contentis the data content as a fraction of the overall dataset size. The tra-

ditional problem of determining a useful visual presentation of a set of data has historically involved

situations where the normalised data content is 1; for example, nearly all the methods surveyed in
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[32] are concerned with computing the static layout of an entire graph.Large scaleinformation vi-

sualisation, introduced in Section 1.1, consists of techniques that deal with visualisations that have

normalised data content less than 1.

Finding an appropriate level of data content for a visualisation is a difficult problem. “Too

little”, results in too little context, causing inefficient use of screen space. “Too much”, results in

too much context, causing a lack of “fine detail” and an inability to determine small features in the

visualisation.

The visual contentis a measure of the visual elements or attributes used by the visualisation

to present the data. It is quantified by avisual content measure, such as Tufte’s data-ink [159],

the number of graphics primitives used in drawing the visualisation, or the entropy contained in

the pixels of the image, as measured by Shannon’s information theory [141]. The visual content

measure includes all the visual properties used to represent the data. In Nesbitt’s taxonomy [107],

this includes spatial visual metaphors such as lines and regions, direct visual metaphors such as

colour and texture, and temporal visual metaphors such as animation.

The difference between the visual content and the data content may seem subtle, but it is, in fact,

an important and rarely considered aspect of information visualisation. Different visualisations of

the same data may have different visual contents, which depends on the techniques employed by

the visualisation method used. For example, the small node-link tree shown in Figure 3.1(a) has

data content of 6 nodes (with 6 text labels) and 5 edges, and visual content of 6 boxes (with 6 text

labels) and 5 lines (and 5 arrows). By contrast, Figure 3.1(b) shows the same data, but in a style

that is deliberately excessive, requiring 24 partially overlapping boxes (with 18 text labels).

However, the difference between data content and visual content is not merely dependent on the

graphical techniques, but also depends heavily on the actual representation of the data itself. For

example, consider the dataset shown in Figure 3.2. The “raw” dataset itself is shown using tabulated

text representation in Figure 3.2(a). In each of the graphical representations in Figures 3.2(b), 3.2(c)

and 3.2(d), each person is represented by a node, and the the ‘manager’ relationship between them

is shown by an edge from the person to their manager. In Figure 3.2(b), the ‘location’ attribute

is represented by supplementing each node with a text annotation. Figure 3.2(c) uses nodes of a

different type for the locations (shown in a different colour), and joins a person’s node to their

location node with an edge of a different type (shown using a dashed line). In Figure 3.2(d), nodes

for persons in the same location are grouped together into a cluster node for that location. Exactly

the same information (that is, data content) is conveyed in each of these visual representations, but
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(a) Classical (b) Excessive

Figure 3.1: A small tree (a section of the Design Behaviour Tree from Figure 2.17(a)), shown using the
classical node-link style in (a) and an excessive style in (b). The same data is present in both, but the
excessive style has a higher visual complexity.

in very different ways, with correspondingly different visual content.

For many visualisations, the visual content is linearly proportional to the data content. The

visual complexityis the ratio of the visual content to the data content. This is a measure of how

succinctly the visualisation captures the data relative to the amount of data being displayed. Whilst

data content must be carefully balanced, between being too small and too large, the visual content

(and thus also the visual complexity) is always minimised, in order that the clarity and readability

of the visualisation may be maximised. The visual complexity has a minimum value of 1, where the

visual content is identical to the data content1. A visualisation technique exhibitsconstant visual

complexityif its visual complexity is independent of the data detail (that is, the visual content is

linearly proportional to the data detail). Similarly the technique exhibitsuniform visual complexity

if its visual complexity is constant over all subsets of the data being set out. Both of these properties

1The issue of the data content and visual content having different units is neglected; in practice the visual complexity
has a minimum value that can be normalised to 1.
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Name Location Manager
John Sydney Jane
Jane London
Joe Sydney Jane

(a) Tabular

(b) Annotations

(c) Mixed types (d) Clustering

Figure 3.2: An example of three different graphical representations of a dataset that is shown in a “raw”
tabular text representation in (a). The location is shown in (b) by textually annotating the nodes, in (c) by
using different types of nodes and edges, and in (d) by clustering nodes in the same location.
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are highly desirable, therefore it is not surprising that many existing visualisation techniques exhibit

one or both of them.

In this model, Tufte’s data-ink ratio can be understood as the inverse of a special case of the

visual complexity, where the visual content measure is the number of non-background pixels in the

visualisation.

Thedata densityis the data content per unit-area on the display device. It has been well studied

in the context of statistical scatter plots, with the aim of maintaining a constant data density at all

levels of detail [173, 174]. It can be understood as the inverse of the visual complexity in the special

case of the visualisation area as the visual content measure. Thus, it does not directly consider the

visual content, and assumes it to be linear and monotone.

For a set of dataX, the data content is denoted byD(X) and the visual complexity of a given

visualisation technique byV (X). The technique hasmonotone visual complexityif and only if

V (X) < V (Y ) for all D(X) < D(Y ). That is, a higher data content visualisation must also have

a higher visual complexity, compared to any lower data content visualisation. Here, attention is

restricted to the set of visualisation techniques with monotone visual complexity. This simplifies

the factors that must be considered when designing Structural Zooming techniques, and ensures

that limits placed on the data content result in corresponding limits on the visual complexity.

3.2 Structural zooming model

Structural zooming, as its name suggests, is a “zooming” technique that allows the user to examine

part of the data in more detail. It is adata-drivenzooming technique that provides the user with

interactive zooming operations which correspond tological operations on the underlying data. In

practice, though, the zooming operations do not actually modify the data, rather, they store and

modify information about the logical level of detail at which the data is presented. Of par-

ticular importance is thefiltering operation, where data is chosen for display based on some set

criteria. This is in contrast togeometry-drivenzooming techniques, or simplygeometric zooming

techniques, which apply the zooming operations to the geometry produced by the visualisation,

rather than to the data itself.

One way of modelling the process of producing a visualisation, is as a pipeline. The canonical

visualisation pipelineis shown in Figure 3.3(a). It shows thatdatais visualisedto creategeometry,

that is, a set ofgraphical elementswith geometric attributes is constructed from the data. This
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Figure 3.3: Visualisation pipelines.
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geometry is thenrenderedinto animagethat may be viewed by users. Techniques forgeometric

zoomingtake the geometry produced by the visualisation, and apply ageometric zoomoperation to

it — thus creating azoomed geometry, as shown in Figure 3.3(b). This zoomed geometry typically

still includes the majority of the dataset, although the geometric arrangement of the data has been

changed so that screen space is disproportionately allocated to the data. Previous work in this area

is described in Section 1.2.3.

Data-driven zoomingis similar, except that the zoom operation is applied directly to the data,

creating azoomed data, as shown in Figure 3.3(c). This zoomed data is then visualised to create

the zoomed geometry and image. Existing data-driven zooming techniques, most of which also

incorporate some aspect of geometric zooming, is described in Section 1.2.4.

In Structural Zooming, shown in Figure 3.3(d), the data itself is separated into a number of

levels of detail, forming amulti-detail dataset. These levels of detail may be intrinsic to the data, or

may be determined by successiveabstractionsof a high-detail dataset. Data from the various levels

of detail is combined into astructurally zoomed(or mixed-detail) dataset that seamlessly integrates

the data elements of differing levels of detail. This allows the use of existing visualisation and

rendering techniques, with the multi-detail dataset.

The aims of Structural Zooming are described in Section 1.3, and form the basis of the opera-

tions and properties required by Structural Zooming techniques:

Data-driven Focus + Context: Presentation of the data at different levels of detail,

with a main focus region and supporting context region.

Support navigation: Allow the user to change the focus and obtain more detail on

selected areas.

Mental map preservation: The value of navigation is greatly reduced if the user

is unable to relate elements in the previous view to elements in the current

view. Thus, the user’s mental map must be preserved during navigation.

Avoid geometric distortion: Geometric distortion may not be used in the visuali-

sation. Data-driven methods of allowing the user to ‘zoom’ into specific areas

of the data must be used.

Constant visual complexity: To assist users’ understanding of the visualisation

and avoid overwhelming them, the visual complexity should be maintained
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at an appropriate and approximately constant level of visual complexity dur-

ing navigation. It is assumed that the visual complexity is uniform over the

visualisation, that is, the visual complexity is only considered “globally” over

the present visualisation, and not at a “local” level within the visualisation.

Good quality layout: The aesthetically pleasing visual layout and presentation of

data possible in static visualisations, should also be present in Structural

Zooming.

The interaction style used for navigation in Structural Zooming is assumed to be adirect-walk.

This consists of a sequence of discrete operations, where each operation selects a data element

in the display — usually by clicking on its visual representation with the mouse. This type of

navigation has been shown to be efficient, in terms of maximising the information available to the

user, compared to the time spent searching [26, 60].

The short-term memory of the user cannot be neglected in the consideration of the navigation

technique of any large scale information visualisation technique. Short term memory allows the

user to remember a small number of aspects of previous visualisations. However, the limited nature

of short term memory restricts both the number of objects that a user can recall, and the length of

time for which they can be recalled (measured as the number of transitions). Specifically, the recol-

lection time is inversely related to the number of objects that are displayed (that is, the more objects

shown, the sooner the user will “forget” them). For a typical visualisation, the user’s history is likely

to be limited to, at most two or three previous visualisations. This means that individual static

presentations should not contain too much information, as the user is unable to retain much of it

once it has left the view. The converse of this, is that it is sometimes possible to deliberately display

slightly less information (particularly context information), in the knowledge that users can retain a

higher proportion of it when the visualisation changes. Both these aspects are enhanced by the use

of animated transitions between visualisations. This is because the animation allows elements of the

previous visualisation to be “converted” or “transformed”, into elements of the current visualisation

that are likely to be reinforced in short term memory, rather than lost or rearranged within it. These

considerations tend to support the use of an approximately constant visual complexity.

In addition, data-driven Focus + Context zooming techniques have the advantage of empha-

sising the data itself during navigation. By contrast, geometric distortion may tend to emphasise

particular visual and geometric characteristics of the presentation of the data.
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Display outputUser input

Figure 3.4: The Model-View-Controller (MVC) architecture.

Structural Zooming is most similar to the geometric and non-geometric Focus + Context tech-

niques presented in Sections 1.2.3 and 1.2.4. The principal difference is the use of data-driven

zooming, with an approximately constant level of visual complexity. This avoids the problems

associated with Graphical Fisheye Views, presented in Section 1.3, that is to say, low focus data

density, high context data density, poor spatial properties and difficult multiple foci.

The concept of a multi-detail dataset is similar to themulti-resolution meshesfound in computer

graphics [57, 74]. A multi-resolution mesh is a collection of several computational meshes of a

geometric model. Each mesh is stored at a different resolution (that is, a different level of detail) in

a hierarchical fashion that allows rapid access to any part of the mesh at any resolution. This is used

to increase the performance of real-time graphics systems by presenting models near the viewer,

at high detail, and distant models at low detail, with seamless transitions between levels of detail.

Another example of multi-detail datasets may be found in Geographic Information Systems (GIS).

Such systems containfeaturesstored in spatial data structures. A feature is a spatial object that

occupies a region of the landscape in the system, such as towns, roads, houses, rivers, fields, and

so on. In these systems, it is common for features to be represented with different levels of detail

depending on the zoom level. For example, when zoomed out to view a large area such as a state,

each town could be represented as a dot. Upon zooming in closer, roads and houses within towns are

shown. This idea can be observed in Figure 1.3, for example, the difference in the representation of

Alfred Street in Figures 1.3(b) and 1.3(c). Structural zooming may be thought of as an extension to

this model, where the features in a visualisation may be at different zoom levels, and thus displayed

at different levels of detail.

TheModel-View-Controller(MVC) paradigm is a commonly found architecture for modelling

and implementing interactive graphical systems. It was introduced in the Smalltalk-80 system [63,
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Figure 3.5: The MVC architecture of Structural Zooming.

64], although literature did not appear until considerably later [85, 86]. As its name suggests, the

MVC is composed of three components, the “Model”, the “View” and the “Controller”, which

communicate as shown in Figure 3.4. TheModel is the abstract representation of the underlying

data. TheView is the visual or graphical representation of the Model which is presented to the user.

TheController is the user interface aspect, that is, how the user is able to input adjustments of the

Model and View.

In Structural Zooming, the Model actually consists of two parts, shown in Figure 3.5. It contains

the entire dataset being visualised, but, more importantly, it contains the structurally zoomed version

of the data. Of course, the structurally zoomed data need not be stored independently; it may be

possible to augment the main dataset with supplementary information, thus allowing the structurally

zoomed sub-dataset to be easily and efficiently extracted. Changing or updating the main dataset

may be supported by the Model, but this is not essential. The View is the visual representation

of the structurally zoomed data that is presented to the user. The Controller deals with how users

interact with the visualisation, more specifically, how they are able to control the level of detail, and

how they are able to navigate and move the focus region throughout the dataset.
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3.3 Structural zooming techniques

Structural zooming systems limit the level of visual complexity in the visualisation to be below a

constant value. This allows them to maintain an approximately constant level of visual complexity,

where conventional visualisation of the data would ordinarily require much higher visual complex-

ity. In this context, distortion techniques, such as geometric zooming, generally tend to have

higher visual complexity, caused by “packing” large amounts of detail into a relatively small con-

text region. Rather than drawing all the context data in a compressed and distorted fashion, a better

approach taken by Structural Zooming is to “summarise” the context data, giving lower detail and

thus lower visual complexity.

In order to be useful, Structural Zooming must provide operations supporting the user in di-

recting the visualisation of the data. Since a Structural Zooming system is an interactive Focus +

Context system, this means providinguser navigation operations, or simplyuser operations, that

allow the user to change the focus region and control which data is included in the visualisation.

Thus, they aredetail-increasing operations, which therefore, by necessity, also increase the visual

complexity. It is the role of the Structural Zooming system to maintain the approximately constant

level of visual complexity, which means that the system must reduce the detail in response to the

user’s increases. In particular, for every type of detail-increasing operation available to the user, a

corresponding inversedetail-reducing operationis available to the system.

When the user increases the detail by performing an operation (thestimulus), the system must

determine:

• Thedetail reducing condition

If the data content has become too high, as a result of the stimulus operation, the detail

reducing condition is true. The simplest way of determining this, is if the data content

measure has risen above some pre-determinedmaximum detail thresholdvalue.

• Theresponse

If the detail reducing condition is true, the response is how the system is to return

the detail to acceptable levels. This must be achieved without disturbing the user’s

navigation or investigation process. Notably, the response cannot include the inverse

operation of the stimulus.

It is also possible to allow the user access to perform the detail-decreasing operations. The user
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Figure 3.6: A flowchart showing the central interaction loop of Structural Zooming.

always has a better idea of the overall goal than the system, and thus may choose to anticipate a

better “response” to a stimulus yet to be performed. However, since the main task of the user is

searching for information in the visualisation, the provision of detail-decreasing user operations is

completely optional. The system does not respond to any detail-decreasing operations performed

by the user. Symmetry would have the system increase the detail, but clearly, how this should be

done is not a choice the system is best equipped to make.

The layout or presentationof the visualisation must be updated as the user changes the view.

This is to ensure that the visualisation quality is preserved, in such terms as good aesthetic proper-

ties, clarity and readability. This is usually achieved with an automatic layout algorithm for the type

of data involved. However, it is important to ensure that the updated layout is sufficiently similar to

the previous layout, to prevent the user from becoming “lost” in the visualisation. Themental map

is the user’s internalised representation of the visualisation. The preservation of the mental map, as

characterised by certain visualisation properties, is important for users to maintain their orientation

and understanding of the data [41, 43, 101, 149]. In addition, all on-screen transitions should be

smoothly animated as this is an effective strategy for mental map preservation [175]. However,

simple animation techniques, such as linear interpolation, may not be sufficient [54], meaning that

specific animation strategies for each type of data and each operation may be required. It is prefer-

able for the animation of an inverse operation to be the time-reversed animation of the original

operation, but this is not essential.

The stages of Structural Zooming are shown diagrammatically as a flowchart in Figure 3.6. It

demonstrates that user operations are followed by a detail evaluation. If the detail reducing condi-

tion is true, then the system determines suitable responses for returning the detail to an acceptable

level. This is followed by the recomputation of the layout and an animated transition from the

previous layout to the new layout.
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Animations in Structural Zooming are assumed to be “independent”, that is, the animations

of two disjoint data elements are also visually disjoint. This allows animations to becomposed

together. This is necessary when the system needs to perform more than one response operation,

or when the response involves a large number of data elements. Animations may be composed

consecutively or concurrently.

Consecutive animation, is when each component animation is performed serially. This intro-

duces the issue of the order in which the component animations should be effected. There is also the

problem of signalling the end of the overall animation to the user without resulting in hestitation or

confusion. The user may be unsure if a subsequent animation will commence after each individual

animation, causing either an unnecessary wait or a further navigational attempt before the overall

animation has completed. This may be alleviated by increasing the frame rate of each component

animation, so that the overall animation always takes some fixed amount of time, however, this is

infeasible when there are many component animations.

Concurrent animation, is when all the component animations are performed together, in paral-

lel. It has the problem of potentially confusing the user if there are many component animations,

causing large amounts of movement. Research in perceptual psychology has shown that humans are

able to track about four independant motions in parallel with little cognitive effort [126]. Thus, con-

current animation is likely to be acceptable when the motion is below this limit, and unacceptable

otherwise.

This suggests a hybrid animation strategy, where the individual animations are partitioned into

groups of four. The animations within each group are animated concurrently, while the set of

“group” animations are consecutively animated. However, the partitioning and ordering problems,

mean that the design of such a strategy is outside the scope of this thesis, which takes the simple

approach of performing all animations concurrently.

3.4 Evaluation methodology

There are several possibilities for the evaluation of interactive Focus + Context techniques, such as

Structural Zooming. The most common of these, including the method used by this thesis, are now

reviewed.

User studiesis the name of a method commonly found in the fields of user interfaces and

perceptual psychology. Such studies involve conducting a controlled scientific experiment with a
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collection of humans performing a particular set of tasks. The goal is to provide support for, or

against, particular hypotheses. In the case of interactive visualisation systems, the hypothesis is

usually about the user’s ability to perform some operation or task in the system being tested. The

experiment must be very carefully designed to ensure that only one variable is changed, and there is

no bias from other controlled or uncontrolled factors. In addition, user studies are logistically quite

involved, and the required statistical analysis of results can be difficult.

Mathematical analysiscan be used in various situations to prove that benefit is obtained by

the use of particular techniques. However, this usually relies on earlier results which have been

obtained using other methods, such as user studies, or psychological and physiological analysis

of the senses. For example, suppose a result has been obtained from user studies which states

that users are successfully able to determine connected nodes in a graph if edges contain at most

three bends. It would then be desirable, to prove mathematically, that a particular graph drawing

algorithm always produces edges with at most three bends. As such, mathematical analysis usually

supplements other evaluation work.

Empirical measuresinvolve experimentally running a technique with a large corpus of test data,

and evaluating the performance against a set of predefined quantitativequality measures. These are

quantitative measures of qualitative aspects of the visualisation and navigation system, similar to

the graph drawingaestheticsused in that field [125]. The measures are objective, but there is an

underlying assumption that they adequately reflect the actual quality of the system, as perceived

by users. In many cases, existing literature in the field of information visualisation and perceptual

psychology, is used to justify the choice and definitions of measures. Most quality measures are

relatively simple and draw on fundamental principles of perception and design, and are thus ac-

ceptable to many researchers. However, fully validating an empirical quality measure, in terms of

how it applies to users, usually requires an appropriately designed user-study. The selection of test

datasets for the corpus is important. Generally speaking, a corpus is better when it has a large num-

ber of datasets with varying statistical properties, and the datasets are derived from “real-world”

applications, rather than being artificially constructed. These criteria are required to support the

application of the results of the empirical study to actual situations of use.

This thesis adopts ahybrid evaluation method, primarily based on empirical measures, but also

incorporating some aspects of user-studies and mathematical analysis. Since this work evaluates a

navigation technique in addition to an information visualisation strategy, a corpus of datasets alone

is not sufficient. We additionally require a corpus ofnavigation datafor each test dataset. This
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navigation data is a description of anavigation paththrough each dataset, that is, a sequence of

Structural Zooming navigation operations. This allows the Structural Zooming technique to be run

several times over the same set of data and operations, each time with different parameters or set-

tings. Although this assumes that the same navigation path would have been taken in each scenario,

it allows a large number of parameters to be widely varied and subsequently directly compared. It

is possible to obtain a user navigation path for each combination of parameters, however, if this is

very large then it can be taxing on the user. Additionally, significant learning effects may need to

be taken into account as the user learns the dataset during their lengthy exposure to it.

The approach for obtaining navigation data is similar to that used if a user study were being

performed, but without much of the complexity required by a full user study. Navigation data is

obtained, in the first instance, by recording the actions of users exploring each dataset in the corpus

using the Structural Zooming technique. This allows the entire sequence of navigation events,

known as alogfile, to be easily and repeatedly “replayed”, each time with different parameters. It

has the advantage that the navigation is being performed not only on actual corpus test data, by

actual users, but it is using the Structural Zooming technique in question, and is thus representative

of the kinds of navigation performed by users in such systems.

Although it is relatively easy to record user navigation actions after instructing users to “ex-

plore” the contents of the dataset, each navigation path still requires the active participation of at

least one user. When the corpus contains many files, each of which is very large, this can become

a burden. A better approach is to devisenavigation strategiesthat are capable of automatically

generating navigation paths. In an experiment, a navigation strategy can be used to generate nav-

igation paths to supplement those obtained from logfiles. Navigation strategies are introspectively

deduced by the experiment designer, based on observation of the exploration strategies exhibited by

users. This means that they are only useful for comparing the parameters of particular Structural

Zooming methods, and not for evaluating Structural Zooming in terms of a particular application

or task, something that would typically require a user-study. Navigation strategies also give the

experiment designer more flexible control of the statistical properties of the navigation data, which

may be useful when analysing the results.

Thus, the hybrid evaluation methodology adopted by this thesis is primarily an empirical study,

based on the measures defined in Section 4.4. Navigation paths for the corpus are obtained from

both logfiles and navigation strategies, which are defined in Section 4.5. Chapters 5, 6 and 7 each

present an empirical study within a particular application domain.
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C H A P T E R 4

Relational Data

This chapter describes the application of Structural Zooming (described in Chapter 3), to the visual-

isation of relational data, namely, trees and clustered graphs. In particular, the multi-detail structure

takes the form of a tree, and forms a natural part of the data. For relational datasets that do not have

an inherent multi-detail structure, one may be deduced by usingabstractions(Section 3.2), such as

a recursive graph clustering algorithm.

As described in Section 2.1.2, clustered graphs are considered to be an extension of inclusion

style trees. As such, Structural Zooming is first applied to trees (both node-link and inclusion

styles) in Sections 4.1 and 4.2, and subsequently applied to clustered graphs in Section 4.3 by

considering the addition of node-link edges to the inclusion tree case. Section 4.4 presents the

empirical evaluation measures for Structural Zooming of relational data. Section 4.5 presents the

navigation strategies for Structural Zooming of relational data.

4.1 H-V layout

This section presents an application of Structural Zooming to tip-over and inclusion trees using the

optimal h-v layout algorithm presented in Section 2.2.1.

4.1.1 Structural zooming technique

The concept of detail in a tree, corresponds very naturally to thelevels in a tree, shown in Fig-

ure 4.1. The root node alone represents the entire tree at the lowest level of detail, intermediate

non-leaf nodes represent their sub-trees at intermediate levels of detail, and leaf nodes represent

only themselves at the highest level of detail.

In this multi-detail model of trees, the structurally zoomed version of the original tree is de-
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Figure 4.1: Levels of detail in a tree.

termined by anabridgementof the tree. Described in Section 2.1.1, an abridgement shows only

the ancestors of the nodes of an antichain, which is a “horizontal cut” through the tree. This im-

mediately suggests the detail-increasing user operation ofexpanding(or opening) nodes that are

collapsed in the abridgement. This adds the children of the node to the abridgement, displaying

them and allowing them to be further expanded, if any are collapsed. The inverse detail-decreasing

system operation is tocollapse(or close) an expanded non-leaf node in the abridgement. This re-

moves all its descendants from the abridgement, changing the non-leaf node into a collapsed node.

Thus, a typical navigation operation proceeds as follows. The user requests the expansion of

a node, typically by clicking on it with the mouse. The system then determines the increase in

detail that would occur as a result of this, and compares it against the maximum detail threshold

(described below). If the detail has increased by an unacceptable amount, then the system chooses

one or more nodes to collapse in order to maintain the detail below the maximum detail threshold.

In order to determine which nodes are to be collapsed, the system maintains aleast recently used

(LRU) queue of expanded nodes, known as theexpanded node queue. When a node is expanded,

it is added to the end of the queue, and is followed by each of its ancestors, in order from the

expanded node up to the root. The ancestors of the node must have been expanded previously, and

so are present earlier in the queue. Each node must appear at most only once in the queue, so in

fact, the ancestors are moved from their previous positions in the queue to the end. Now, when the

system is required to collapse one or more nodes, it simply traverses the expanded node queue from

the head, collapsing nodes until the maximum detail threshold criteria is met. The specific order
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of the queue guarantees that nodes are collapsed starting with the deepest expanded nodes. This

prevents the undesirable situation where a node is collapsed even though it has descendants that

have been expanded more recently. In addition, none of the ancestors of the node being expanded

should be collapsed in response to the expansion. This is easily achieved by stopping the expanded

node queue traversal when the node being expanded is found. Figure 4.2 shows the effect of an

example node expansion on the expanded node queue.

In fact, this LRU-based strategy is one of several ways of determining the nodes to be collapsed.

The most notable alternative would be to use Furnas’s fisheye Degree of Interest (DOI) measure, to

collapse nodes with the lowest DOI value. Other strategies may use the graph theoretic or Euclidean

distance metric between nodes. In addition, in all such node collapsing strategies, the implementa-

tion of multiple focus regions can be achieved by allowing thepinningof nodes by the user, so that

pinned nodes are never chosen to be automatically collapsed.

However, node expanding and collapsing alone are not sufficient. The situation may arise where

the expanded node queue only consists of one node and its ancestors. This occurs when the user

is “drilling down”, repeatedly expanding nodes inside the previously expanded node. In this case,

when the maximum detail threshold is exceeded, it is not possible to collapse any nodes. This

means that in deep trees, the data content measure can continue to increase as the tree is explored

more deeply. Since the abridgement is drawn at an appropriate size for filling the display, yet the

layout size continues to grow (since the size of the abridged tree is growing), the resolution of

the abridgement decreases. Figure 4.3 shows an example of this. Avoiding this problem is the

motivation for “level zooming” in Structural Zooming of trees.

Level zoomingoperates by distinguishing one non-leaf node to be thepseudo-rootnode,rp.

The pseudo-root is initially the root node,rp = r. The abridgement is drawn such that the region

of the pseudo-rootR(rp) fills the screen, rather than the region of the rootR(r). The pseudo-

root node must always be an ancestor of the most recently expanded node. This gives the system

another detail-reducing operation,level zooming in(or zooming in a level), that it can perform if

no nodes can be collapsed. This involves making the new pseudo-root node be the child of the

current pseudo-root node which is also an ancestor of the most recently expanded node and hiding

the siblings in the process. This can be repeated as many times as is necessary in order to maintain

the maximum detail threshold.

To allow the user to access the parts of the tree hidden by level zooming, the additional user

operation oflevel zooming out(or zooming out a level) must be provided. This simply performs the
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Figure 4.2: An example of how the expanded node queue updates after successive node expansion opera-
tions. The non-hatched regions indicate the visible expanded nodes of the tree. The queue is ordered such
that left-to-right corresponds to head-to-tail.
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Figure 4.3: An example of a deep tree that has been explored by “drilling down”.

inverse operation, making the new pseudo-root the parent of the current pseudo-root node. Since

this operation causes the siblings of the current pseudo-root node to become visible, it is a detail-

increasing operation. This means that the system may need to reduce the detail in response to it.

Obviously, level zooming in is not useful as a response, since it would exactly negate the requested

level zoom out. Thus, the system can only respond to a level zoom out by collapsing nodes. (This

is always possible, since the nodes can always be collapsed upwards as close to the root node as

necessary.) Figure 4.4 illustrates the level zooming operations.

To summarise, the detail-increasing operations available to the user are:

• Expanding a collapsed node

• Level zooming out

The detail-decreasing operations available to the system are:

• Collapsing an expanded node

• Level zooming in

The response of the system to level zooming out:
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Figure 4.4: Level zooming by changing the pseudo-root node.

• Cannot include level zooming in

• May include the collapsing of any nodes

The response of the system to the expanding of a node:

• Cannot include the collapsing of that node or any of its ancestors

• May include collapsing of any other node

• May include level zooming in one or more levels

One of the aims of Structural Zooming is to maintain good visualisation aesthetics. To ensure

that this is achieved, the layout algorithm is run after each operation, recomputing the placement

of the nodes. The transition between the old and new layouts is animated, as described below in

Section 4.1.2. Only the layout for the subtree rooted at the pseudo-root node is updated, while the

layout for the off-screen part of the tree (that is, the part of the tree that does not have the pseudo-

root node as an ancestor) does not change. This helps to preserve the user’s mental map, as hidden

parts of the visualisation do not change appearance whilst out of view. However, there are two

possibilities for updating the layout inside the pseudo-root node:
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1. Recompute the layout for the entire tree, but only update the positions of descendants

of the pseudo-root.

2. Recompute the layout as though the pseudo-root is the overall root of the tree.

Put another way, although only the descendants of the pseudo-root are updated, the layout is recom-

puted using either the actual root or the pseudo-root of the tree as the root of the layout.

Using the root has the major disadvantage that the quality of the layout of the pseudo-root may

be poor when taken on its own, as the layout algorithm optimises the layout of the overall tree. For

example, the region of the pseudo-root may have an extreme aspect ratio (compared to the desired

aspect ratio), because the h-v layout algorithm has optimised the layout so that the overall tree has

a good aspect ratio. In addition, the size of the overall abridgement may be quite large, whereas the

size of the on-screen subtree is known to be managable. Thus, performing the layout for the entire

abridgement may be too computationally expensive, despite the use of efficient algorithms.

Using the pseudo-root has the disadvantage that the resulting layout may be quite different

from previous layouts, resulting in large layout changes when zooming in. However, the animation

used helps to alleviate this problem somewhat, and the advantage of having an optimal layout far

outweighs this disadvantage. It also makes sense to use the pseudo-root as the root of the layout

computation as it is the root of what the user can see. For these reasons our system uses the pseudo-

root as the root of the layout computations.

The final consideration for Structural Zooming of h-v trees is the choice of data content measure.

Several simple data content measures are possible:

Number of nodes (NN): This performs poorly for deep trees, where much of the

maximum detail threshold is occupied by non-leaf nodes that are simply the

path taken to the area the user is interested in. As such, this data content

measure is better for trees that are not very deep, and trees where the values

of all non-leaf nodes are equally as important as the leaf nodes.

Number of leaf and collapsed nodes (NC):This avoids some of the problems in

using the number of nodes, but has the problem that nodes of large degree can

use much of the maximum detail threshold. This detail measure is better for

deeper trees that have limited degree, and where the values of the leaf nodes

are more important than the values of expanded non-leaf nodes.
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Number of expanded nodes (NE):This is useful for trees that have larger degrees.

When a node of very large degree is expanded, it is possible that it may

have more children than the maximum detail threshold, forcing all other ex-

panded nodes to be collapsed. The reasoning behind counting only the ex-

panded nodes, is that they are the nodes the user has directly shown interest

in (through expanding them). However, this measure is less useful for deep

trees and trees with small degrees, where many nodes must be expanded in

order to reach a small number of leaf nodes.

Since the choice of data content measure depends on the characteristics of the data, the empirical

investigations each examine different detail measures, as appropriate. The investigation in Chapter 5

uses the number of leaf and collapsed nodes, while Chapters 6 and 7 use the number of leaf and

collapsed nodes and the number of expanded nodes.

The concepts presented in this section are now illustrated with an image gallery of three example

operations.

Figure 4.5 shows the effect of expanding the upper of the two left-most collapsed nodes. It is

observed that the large expanded node originally occupying most of the display has had many of its

descendants collapsed, and now occupies a smaller area on the right. The root node has changed

from vertical to horizontal layout, and the layout of several other nodes has also changed. The two

displays have similar sizes, amounts of wasted space and numbers of nodes.

Figure 4.6 shows the effect of expanding the bottom-most collapsed node. In this case, the node

expands to reveal six children, laid out vertically on the left of the display. However, the remaining

expanded nodes have collapsed considerably in order to make sufficient space for this. The right

expanded node has collapsed completely, whilst the children of the left one have collapsed. Again,

the displays are similar in detail and size.

Figure 4.7 shows the effect of level zooming. It shows how the visualization in Figure 4.3

appears when level zooming is enabled. It is seen that there are less on-screen nodes, and that those

present are larger, more easily readable and closer to the central node which was expanded.

4.1.2 Animation

The example Figures 4.5, 4.6 and 4.7, illustrate how these transitions would appear to the user in the

absence of any animation. Considerable effort is required to determine the changes that have taken
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(a) Before

(b) After

Figure 4.5: Expanding the upper of the two left-most collapsed nodes in (a), indicated by a red box.
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(a) Before

(b) After

Figure 4.6: Expanding the bottom-most collapsed node in (a), indicated by a red box.
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Figure 4.7: The effect of enabling level zooming for Figure 4.3.

place between them. This problem is compounded in an interactive system, as the “before” image is

generally not available once the operation has occurred, and so it is not possible to directly compare

the “before” and “after” visualisations. This section describes and demonstrates the animation

techniques for h-v inclusion and tip-over tree layouts. By comparison to the static Figures 4.5, 4.6

and 4.7, it strongly reinforces the value of animation.

An animation method is required for each type of operation that can be performed, as well as

for layout updates. In the inclusion tree style, expanding is performed by linearly interpolating

the size of the collapsed node between its original collapsed size and its expanded size, followed

by drawing the child nodes. Animated Figure 4.8 shows this animation. Collapsing is the time-

reversed animation, that is, the expanded node’s children are removed and the size of the node is

then linearly interpolated to its original collapsed size. In both cases, changes in node sizes affects

other nodes such that no occlusions occur; for example, as a node is expanded, its ancestor nodes

are also expanded as necessary.

Expanding and collapsing nodes is rather more complicated in the tip-over tree style. The

approach taken is to have the child nodes “slide” in or out of the parent node. For simplicity, only

the expand operation is described, as the collapse operation is obtained simply by time-reversing



102 Relational Data

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.8: Expanding a node using the inclusion tree style.

the expansion animation. In addition, only expansion to horizontal layout is considered, for the

‘real center’ h-v parent node strategy — the remaining variants are easy to obtain following the

same principles. The path of each node in the expansion animation has two phases, such that

it approximately follows the corresponding node-link edge in the tree. The first phase, slides the

children down together out of the parent node. The second phase, separates the children, distributing

them inx to their final position. The speed of each node is constant over its path. The size of each

child node is linearly interpolated during the animation from the size of the parent node to the size

of the child node. Animated Figure 4.9 shows an example of the tip-over node expansion animation.

In both the inclusion and tip-over styles, level zooming in and out is simply achieved by linearly

interpolating the clipping rectangle of the display from the old pseudo-root node region to the new

one.

Adjusting the layout requires changing the arrangement of one or more nodes from horizontal

to vertical, or vice-versa. This is achieved by “rotating” the child nodes about the center of the node

in question, as illustrated in Figure 4.10. Figure 4.11 illustrates the three different types of rotation

our system uses:

1. Linear, which simply linearly interpolates the positions of the children from their
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Animated Figure 4.9: Expanding a node using the tip-over tree style.

Layout
Final
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Figure 4.10: Rotating the child nodes to change a node arrangement from vertical to horizontal.
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Figure 4.11: The different types of rotation available for updating the layout of a node, (a) linear, (b) circular
and (c) orthogonal. The node is moved from its original position to its final position along one of the indicated
paths.
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Animated Figure 4.12: Linear rotation of a h-v node.
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Animated Figure 4.13: Circular rotation of a h-v node.
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Animated Figure 4.14: Orthogonal rotation of a h-v node.
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initial location to their final location.

2. Circular, which interpolates the positions of the children along an elliptical arc.

3. Orthogonal, which interpolates the positions of the children along a “Manhattan

path”.

These rotation types are shown in Animated Figures 4.12, 4.13 and 4.14. Linear and circular rota-

tions are subject to occlusions between moving siblings, although circular rotation is not as prone to

it. Orthogonal rotation requires the nodes to traverse a longer distance, and can cause the size of the

node to increase considerably during the animation, but has the advantage of completely avoiding

occlusions.

Rotating the layout of a node between horizontal and vertical in the tip-over style, is similar to

that in the inclusion style, except that the parent node and node-link edges must also be animated.

This is achieved by applying the same rotation type to the parent node and each of the bends in the

node-link edges, shown in Animated Figure 4.15.

Animated Figures 4.16 and 4.17 show the animated transitions of the static images in Figures 4.5

and 4.6 using orthogonal h-v node rotation. The difference in ease of understanding between the

static images and animations is immediately apparent.

The animation file accompanying this thesis,minepump-tour.wmv , shows the animations

used by the system on the Mine Pump DBT from Figure 2.17(b). It demonstrates a navigation

through the DBT, illustrating the main features of the Structural Zooming system. The compressed

version of the Mine Pump DBT from Figure 2.41 is not used, as it is not deep enough to exhibit level

zooming. The data content measure used is the number of nodes present, with a maximum detail

threshold of 12 nodes. This is unrealistically low, in order to illustrate the features of Structural

Zooming. A side-effect of this is that some nodes are closed immedately upon the next node being

expanded: this situation would be avoided with more realistic settings.

4.2 Arbitrary node layouts

The application of Structural Zooming to arbitrary inclusion layouts is now considered, in particular,

those that use the Jewellery Box Inclusion Layout Algorithm (JBILA) described in Section 2.2.2.

One of the biggest problems with the Jewellery Box Inclusion Layout is that it is notstable.

This means that a small change in the input tree may cause a large change in the resulting layout.
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Animated Figure 4.15: Rotation of a h-v node in the tip-over style, using orthogonal animation.

For example, Figure 4.18 shows a tree of six differently sized nodes laid out using the JBILA. The

nodes are labelled A to F in decreasing order of size. Node D is now enlarged to be the largest node

(as though it had been expanded). Figure 4.19(b) shows the result of using JBILA on this modified

layout, which, as can be seen, bears little resemblance to the original layout in Figure 4.18.

Clearly, this situation is far from adequate for Structural Zooming. It is a requirement that the

on-screen changes caused by a structural change are minimised. On its own, the JBILA makes no

attempt to do this. Unlike the h-v inclusion layout style, there is no inherent structure which can be

exploited for the layout transition animations.

Animated Figure 4.19(c) shows the transition from Figure 4.18 to Figure 4.19(b) animated using
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Animated Figure 4.16: Animated transition of the operation shown in Figure 4.5.
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Animated Figure 4.17: Animated transition of the operation shown in Figure 4.6.
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Figure 4.18: A JBILA layout of 6 differently sized nodes.

linear interpolation. This animation is clearly very hard to follow, and therefore is unsatisfactory for

use in an interactive system. The poor suitability of linear interpolation for general graph animation

has also been noted by Friedrich [54, 55].

We may use the results found in Friedrich’s thesis [54], to construct a solution to the layout

transition animation problem. Friedrich presents methods forgraph animation, which demonstrate,

given initial and final positions for a set of nodes in the 2D plane, how to obtain a pleasing animation

of the transition. The methods investigated by Friedrich involve linear regression to find appropriate

affine transformations, and clustering to find appropriate subsets of the graph to apply the affine

transformations. The 2D affine transformations considered — translation, scaling, rotation and

shearing — correspond to the 2D projections of manipulations of 3D objects in space — translation,

scaling and rotation. The underlying assumption of this work is that these 2D affine transformations

are easy for humans to follow and understand, since humans are familiar with the 3D manipulations

to which they correspond. While this is yet to be experimentally verified with human subjects,

Friedrich showed that the techniques work well with respect to some empirical measures of graph

animation quality.

Although this method is useful for animating arbitrary and general changes in node positions,

it is not appropriate to use it as the sole means for animating between layouts in Structural Zoom-

ing. The method deals with how to best mitigate the impact of the changes on the user’s mental

map: it assumes that the initial and final layouts are fixed and is not concerned with how they are

obtained. By contrast, in Structural Zooming, the final layout is found by performing modifications

and rerunning the layout algorithm on the initial layout. Friedrich’s method makes no attempt to

minimise the actual changes themselves, and simply animates the transition, even if a better final

layout exists. In Structural Zooming, it is not particularly useful to have all the on-screen nodes
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(a) Initial layout (b) Final layout
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(c) Linearly animated transition

Figure 4.19: Node D from Figure 4.18 has been expanded, and the resulting tree laid out using JBILA.
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(a) Point node layout (b) Non-zero node sizes (c) After applying FTA
to (b)

Figure 4.20: The effect of using the Force Transfer Algorithm.

completely rearranging after every operation — no matter how pleasing the transition animation.

As such, Friedrich’s graph animation methods may be useful for enhancing the animations in a

Structural Zooming system, but not on their own — more is required.

This prompts the consideration of a method which specifically aims to minimise the changes

induced by an operation. The most straightforward way to do this is to limit the number of nodes

which move, and the amount by which they move. One such way, is to apply theForce Transfer

Algorithm (FTA) [77] (or its predecessor, theForce Scan Algorithm(FSA) [42, 89]) to the display,

after performing each Structural Zooming operation, rather than performing a full layout. The

FTA and FSA are techniques for resolving node–node and node–edge occlusions in graph drawing.

Typically, graph drawing algorithms treat nodes as points in the plane, as shown in Figure 4.20(a).

However, in most real-world applications, nodes have some associated information, such as text

or images. To display this information in the graph drawing, requires nodes to be drawn in a

bounded finite region of the plane — usually as rectilinearly aligned rectangles. As the graph

drawing algorithm has neglected the non-zero area of the nodes, drawing rectangles centered at the

locations of the (point) nodes can cause these nodes to occlude edges and each other, as shown in

Figure 4.20(b). The FTA and FSA methods are incremental graph layout postprocessing techniques

for resolving this problem. They use a force-based approach, similar to that used in force-directed

graph layout [32, 40, 56], to determine how to move each node as little as possible whilst resolving

any occlusions and preserving the layout as much as possible. This is achieved by preserving

the orthogonal orderingof the layout, which considers only the order of the nodes in thex and

y directions. At a simple level, the algorithm works as though “springs” are placed between all

pairs of adjacent nodes, forcing overlapping nodes to separate and preventing new occlusions from

occuring. The resulting layout closely resembles the original, without the occlusions, as shown in

Figure 4.20(c).
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The FTA approach can be adapted for use with Structural Zooming. Rather than following

each Structural Zooming operation with a full layout of the entire visible graph, the previous layout

is maintained and the operation is appled. This causes the sizes of some nodes to change, and

then the Force-Transfer Algorithm can be applied to resolve any resulting occlusions. This gives

a purely incremental approach to the problem, where the resulting layout closely resembles the

previous layout. Consequently, it is easy to animate the movement of the nodes using simple linear

interpolation, or even using the path effected on the nodes by the forces present in the FTA.

Whilst such an incremental strategy is pleasing from the point of view of a mental map and

transition animation, it sacrifices the quality of the layout. The only time a layout is performed is

initially, after this, the layout is merely modified with each successive Structural Zooming operation.

These modifications pay no regard to the layout quality or to any specific graph drawing aesthetic

criteria, but only consider the orthogonal order of the nodes. This means that the quality of the

layout can be expected to decrease after each operation and these decreases accumulate over many

Structural Zooming operations, thus causing the quality of the layout to deteriorate. Since good

layout quality is an explicit goal of Structural Zooming, this is clearly not acceptable. This problem

may be mediated by monitoring the quality of the layout with some measure, and then performing

a full layout when the quality decreases below a predefined threshold of acceptability. This lower

limit may be relative to the quality of the last full layout algorithm results, or perhaps relative to the

quality of the optimal layout for the current display. However, this full layout would then require a

full animation solution, such as using Friedrich’s previously discussed graph animation techniques.

This means that the incremental animation approach merely defers the problems which arise from

changing from one full layout to another, rather than solving them.

4.2.1 Stable jewellery box inclusion layout algorithm

The traditional approach to the stability of graph layouts is the use oflayout constraints[23]. These

are additional restrictions on the positions of nodes, based on their previous positions. However,

these additional constraints are generally represented as linear equations, which means that they

are best integrated with graph drawing algorithms that compute layouts with techniques such as

linear programming and integer linear programming. In such cases, the additional layout stability

constraints are simply expressed as part of the actual graph drawing problem instance, and solved

without any additional consideration from the graph drawing algorithm.

This thesis presents a similar approach to layout stability. The JBILA is fully run after each
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Structural Zooming operation, however, it has been extended to enhance its stability. This modified

JBILA is theStable Jewellery Box Inclusion Layout Algorithm(SJBILA). Since it is based on the

JBILA, a good quality layout is assured, and because the layout only changes by a small amount

after each operation, simple animation techniques such as linear interpolation may be used.

A key observation is that the JBILA does not return a unique optimal layout, rather, it is an

heuristic that returns one of many possible solutions. The solution found depends on the decisions

made during the course of the algorithm. The goal is to guide the JBILA into selecting a layout that

is as similar as possible to the previous layout. The first time the SJBILA is run there is no previous

layout, and so the layout proceeds identically to the standard JBILA.

First, the order in which the nodes are placed does not change. This prevents nodes that are

expanded (and thus larger than previously shown) from “jumping” to the start of the list of nodes.

For example, consider expanding thei-th largest node so that it becomes the largest node. (Here

the nodes are labelled according to their placement order in the initial layout,1...n.) JBILA places

this nodei first, and following that places the nodes1...i − 1, i + 1...n around nodei, potentially

creating a very different layout. By preserving the placement order, it is ensured that nodes 1 to

i − 1 have the same layout as previously, giving the same “base” layout for the placement of node

i and nodesi+ 1...n.

Figure 4.21(b) shows the tree from Figure 4.18 after applying JBILA with the same node place-

ment order as in Figure 4.18. Note that in Figure 4.21(b) the relative placement of nodes A to C is

the same as in Figure 4.18, but their placement in Figure 4.19(b) is substantially different. Animated

Figure 4.21(c) shows the linearly animated transition from Figure 4.18 to Figure 4.21(b). We can

observe that there is still some occlusion, but considerably less than in Animated Figure 4.19(c).

Secondly, the selection of possible node placements is restricted to those which preserve the or-

thogonal ordering of the node with respect to its immediate geometric neighbours. This orthogonal

ordering is defined as follows. The orthogonal ordering of nodev with respect to (or “relative to”)

nodeu is given by which of the eight rectilinear regions aroundu the centre of nodev lies in. This

is illustrated in Figure 4.23, showing the eight possible regions and a nodev which lies in the NE

region, based on its centre position. Given a new location of nodev, say,v′, the orthogonal ordering

of v (relative tou) is preserved if and only ifv′ lies in the same region asv or an adjacent region.

Regions are adjacent if they share a common bounding edge. For example, region E is adjacent to

NE and SE, but not to S, SW, W, NW or N. This means that the nodev shown in Figure 4.23 may

to move anywhere in regions N, NE and E while still preserving the orthogonal ordering.
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(a) Initial layout (b) Final layout

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(c) Linearly animated transition

Figure 4.21: As for Figure 4.19, except that the nodes are placed in the same order as in Figure 4.18.
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(a) Initial layout (b) Final layout
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(c) Linearly animated transition

Figure 4.22: As for Figure 4.19, except that the stable JBILA has been used.
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Figure 4.23: The eight orthogonal ordering regions surrounding nodeu, labelled according to the points of
the compass, with nodev in the NE region.

During the algorithm, candidate points which do not preserve the orthogonal ordering for each

of their neighbours, are not considered for placement. To find the “neighbour” nodes, the algorithm

examines the Delaunay triangulation maintained by the JBILA. It finds the triangles that are within

a distance ofk from the triangle to which the candidate point belongs. The neighbours are the nodes

at the corners of these triangles. The parameterk controls how strictly the orthogonal ordering is

checked, larger values indicate that the candidate point is compared against more neighbour nodes.

The value ofk should not be too large, as being too strict in the preservation of the orthogonal order-

ing will cause many candidate points to be completely rejected. It is desirable to check the nearest

neighbours, but since the goal is the adjustment of the layout, some leniency must be granted. This

system usesk = 0, that is, only the three immediate neighbours are used. Applications requiring

stronger orthogonal ordering preservation are free to usek = 1, k = 2 or higher, as necessary.

Figure 4.22(b) shows the tree from Figure 4.18 laid out using the JBILA with preserved node

layout order and respecting orthogonal ordering. Note that, in this case, the nodes E and F have been

placed in locations closer to their original situation. This is despite their “base” layout of nodes A–

D having changed. The result is a layout which much more closely resembles the previous display.

Animated Figure 4.22(c) shows the linearly animated transition from Figure 4.18 to Figure 4.22(b).

In this case, there are no longer any occlusions at all, and the animation is similar to that which

would be obtained using the FTA or FSA algorithms. The transition is clearly superior to that

shown in Figure 4.19, even though both make use of linear interpolation.
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Figure 4.24: The additional candidate positionsp1 andp2, from an original positionp in the N region.

However, due to the way in which JBILA selects candidate positions for node placement, it is

possible for a node to have no candidate positions which preserve the orthogonal ordering. In this

case, we can re-examine the candidate positions (in order), and use a heuristic to generate addi-

tional candidate positions for each. The additional positions are checked for orthogonal ordering

preservation, and positions which fail are skipped. Of the remaining positions, the one which is the

shortest distance from the previous node position is selected. In the unlikely event, that all the ad-

ditional candidate positions are skipped, the algorithm simply selects the candidate position which

is the shortest distance from the previous node position.

The additional candidate positions are found as follows. If the actual positionp is in region N,

then we choose new positionsp1 andp2 by holding they coordinate ofp constant and “sliding”

it across until it just enters the NW and NE regions, as shown in Figure 4.24. Similarly for points

in regions S, W and E. For points in region NE, the two pointsp1 andp2 are found by “sliding”

towards regions N and E, as shown in Figure 4.25. Similarly for regions NW, SE and SW.

Thus, a stable layout is very important when considering animated changes to the graph being

laid out. Often, there are places in graph layout algorithms where equivalent choices could be made;

in such cases it is best to consider the stability of the layout, and aim to make the layout change as

little as possible.

It is noted that this technique does not prevent node occlusions during the animation. However,

due to the similarity of the layouts, and the types of operations involved, such occlusions are usually
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Figure 4.25: The additional candidate positionsp1 andp2, from an original positionp in the NE region.

only small (compared to the size of either node), and brief (compared to the length of the overall

animation). It is also noted that, in rare circumstances, the technique does not prevent the entire

layout from rearranging. In such cases, the user’s mental map is usually lost. However, the situ-

tation is no worse than with the standard JBILA algorithm. Techniques such as Friedrich’s graph

animation [54] can be used to help improve the situation (compared to linear interpolation). In such

cases, it may also be beneficial to break the animation of the node positions into several sequential

operations. Although it would make the overall animation longer, users would be more forgiving,

as it would happen relatively infrequently. Deciding how to partition the nodes into groups is a

separate issue which would need to be addressed. Psychological research shows that people can

track up to four differently moving objects at any given time [126], and that objects with similar

motions are perceived as being grouped together [17, 34, 97, 99, 105]. This means that the nodes

should be grouped so that there are at most four distinct velocity vectors in the animation (within

some tolerance).

4.3 Orthogonal edge animation

As described in Chapter 2, a clustered graph is an inclusion tree with the addition of edges between

nodes. The application of Structural Zooming to clustered graphs utilises the previous application

of Structural Zooming to inclusion trees, with the node-link edges of the clustered graph treated as

a separate additional consideration. Two aspects must be considered: the edge routing algorithm,
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used to determine the layout of the edges in the presence of the already placed inclusion tree nodes,

and the edge animation strategy, used to animate changes in the edges due to Structural Zooming

operations.

Recall from Section 2.1.2 that an orthogonal edge layout is simply an ordered list of real num-

bers, which are the alternatingx andy ordinates of its segments (and endpoints). Anorthogonal

edge animationis defined as a function

f : [0, 1] → E ,

whereE is the set of all possible orthogonal edge layouts, given by

E =
⋃

k∈N
Rk+2,

whereN is the set of natural numbers. The parameter tof , denoted byt, represents time in the

animation;t = 0 indicates the start of the animation andt = 1 indicates the end. The orthogonal

edge layoutf(0) is called theinitial frame or initial layout, andf(1) is calledfinal frameor final

layout of the animation. The remaining orthogonal edge layoutsf(t), 0 < t < 1 are called the

intermediate framesor intermediate layouts. The ideal animationis defined over all time points

in the range 0–1. However, as computer animation is achieved using apparent motion perceived

between discrete images (frames), theactual animation, or simply theanimation, is a finite col-

lection of orthogonal edge layouts, obtained by sampling the ideal animation at regular intervals

in time. Thus, an orthogonal edge layout is animated by changing the values of its segments over

time. An animation is said to besmoothif f is in C1, that is to say, the trajectories of each of the

edge segments are first-order differentiable on the closed intervalt ∈ [0, 1]. It is worth noting that

this definition allows for the possibility of the addition and removal of segments, since the number

of segmentsk may be different in each intermediate frame. In this case, an animation is said to

be smooth if the length of a removed edge segment tends to 0, and similarly for inserted edge seg-

ments. Another way of considering this is to use “degenerate” segments to ensure that the number

of segments does not change throughout the animation. Section 4.3.3 describes this situation in

much more detail, and it is sometimes assumed (for simplicity, and without loss of generality) in

the following sections that all the frames have the same number of segments.

Althoughf defines an orthogonal edge animation, it is difficult to compare thequalityof two or-
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thogonal edge animationsf1 andf2. This is because there is no clear indication of what quantitative

properties the “optimal” or “best” animation should have.

Different edge animations can differ in quality. For example, Figures 4.29 and 4.31 show two

alternate animations between the same initial and final edge layouts — clearly Figure 4.31 is simpler

and easier to understand than Figure 4.29. There are an infinite number of possible animations

between any pair of initial and final orthogonal edge layouts. The situation is similar to the question

of determining the quality of a graph drawing. The field of graph drawing has devised various

aesthetics, which are quantitative measures of particular qualitative aspects of a graph drawing

[125]. The hypothesis is that optimising the aesthestics yields better graph drawings. Exactly

which aesthetics are optimised is generally a domain-specific issue, and thus is a choice made by

the graph drawing algorithm designer. We approach the problem of determining an orthogonal edge

animation in a similar way. The functionM : E → R is aquality measure(i.e. aesthetic), which

takes an orthogonal edge layout and returns a numeric quality value. Several orthogonal edge layout

quality measures are described in Section 4.4.

Theorthogonal edge animation problemis defined as follows:

Orthogonal Edge Animation Problem(OEAP): Given an initial orthogonal edge lay-

outE0 ∈ E and final orthogonal edge layoutE1 ∈ E , find an orthogonal edge anima-

tion f such thatf(0) = E0, f(1) = E1 and the value

∫ 1

t=0
M(f(t))

is minimised over all possible choices off .

Animated Figure 4.26 shows an example of the animation that results from expanding a node

in a clustered graph, that of thec488 compiler (described in more detail in Chapter 6). The node

placement is determined by the SJBILA, and the orthogonal edge animation is determined using

the methods presented in this section.

Throughout this section, edge layouts are assumed to benormalised, which means that they

always begin with anx segment, and end with ay segment. A justification of this and method for

ensuring it is presented in Section 4.3.3.
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1 2 3
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10 11 12
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Animated Figure 4.26: An example animation of expanding a node in thec488 compiler, described in
Chapter 6.
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1 2 3 4
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9 10 11 12
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Animated Figure 4.27: A simple linear edge animation.

4.3.1 Linear edge interpolation

A linear edge interpolationor linear edge animationis an orthogonal edge animation where the

value of each segment is moved from its initial value to its final value, using linear interpolation.

All the segments are moved concurrently, and the lengths of the segments are automatically adjusted

in order to maintain connectivity. For initial and final layouts given by

E0 = (x1, y1, x2, y2, ..., xn, yn)

and E1 = (x′1, y
′
1, x

′
2, y

′
2, ..., x

′
n, y

′
n),

the segments of an intermediate orthogonal edge layout at timet are given by the expression

xi(t) = xi + t(x′i − xi)

for 1 ≤ i ≤ n, and similarly fory. Here it is assumed that all the orthogonal edge layouts have the

same number of segments. Differing numbers of segments are described below in Section 4.3.3.

Animated Figure 4.27 shows a simple example of a linear edge animation.

Now consider the orthogonal edge animation problem instance, in which an orthogonal edge



4.3 Orthogonal edge animation 123

b

c

da

(a) Initial edge layout

a
b

c
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(b) Final edge layout

Figure 4.28: An orthogonal edge animation problem instance.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.29: Linear animation solution to the orthogonal edge animation problem instance shown
in Figure 4.28.
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Figure 4.30: Frames in Figure 4.29 which contain segments of zero length.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.31: Improved animation solution to the orthogonal edge animation problem instance
shown in Figure 4.28.
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Figure 4.32: A NE-monotone orthogonal edge layout.

layout must be animated between initial and final layouts as shown in Figure 4.28. If the position

of each orthogonal segment is animated using linear interpolation, the result is shown in Animated

Figure 4.29. The relative positions ofb, b′, c, c′ mean that during the animation the edge becomes

self-intersecting between segmentsa andd. Further, there are two instantaneous points in the ideal

animation, when the length of segmentsb or c is zero, shown in Figure 4.30. Intuitively, it seems

that any ambiguities (as defined in Section 2.1.2) are highly undesirable during edge animation, and

detrimental to the users’ comprehension of the changes being animated. For example, Animated

Figure 4.31 shows an animation of the instance from Figure 4.28, which avoids these problems. This

animation appears to be easier to follow, although it does have additional disadvantages, notably

that it introduces additional edge segments (and therefore edge bends) during the course of the

animation.

4.3.2 Monotone edge layouts

An orthogonal edge layout ismonotoneif the sequence ofx coordinates of the bends increases

or decreases monotonically, and similarly for they coordinates. In the same way that edges are

directed1, edge segments are also directed from a source bend (or node) to a target bend (or node),

such that the chain of edge segments may be traversed from the source node to the target node.

For orthogonal edges, this gives four possible edge segment directions, corresponding to increas-

ing/decreasing horizontal/vertical segments. Thesesegment orientationsare labelled according to

1Note that undirected edges can be considered to be directed by consistently choosing one node to be the source and
one node to be the target. This may be done, for example, by labelling the nodes from 1 ton, and then directing edges
from the node with smaller label to that with larger label.
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NE NW SW SE
NE similar partial dissimilar partial
NW partial similar partial dissimilar
SW dissimilar partial similar partial
SE partial dissimilar partial similar

Table 4.1: Monotonic similarity between orthogonal edge layouts.

the points of the compass, that is, N (North) for increasing vertical, S (South) for decreasing ver-

tical, E (East) for increasing horizontal and W (West) for decreasing horizontal. We can use this

to represent the “topology” oredge orientationof an edge as a string of segment orientations. For

example, assuming that the edge is directed in order of segmentsa, b, c, d, the edge orientation

of Figure 4.28(a) is SENE, and the edge orientation of Figure 4.28(b) is SWSE. Clearly, an edge

layout is monotone if and only if the vertical segments of its orientation are either all N or all S (or

neither), and the horizontal segments are either all E or all W (or neither). For example, Figure 4.32

shows a monotone edge layout with orientation NENENENENE, or(NE)5, and we say that this

edge isNE-monotoneor that itsmonotonicityis NE. An orthogonal edge layout may be monotone

in only thex or y direction, in which case it is said to beN-, S-, E- or W-monotone, as appropriate.

Two monotone orthogonal edge layouts aresimilar if they have the same type of monotonicity,par-

tially similar if their monotonicities differ in one axis, anddissimilar if their monotonicities differ

in both axes (ie. their monotonicities are different). This is summarised in Table 4.1.

A key observation is that linear interpolation of edge segments is guaranteed to avoid the prob-

lems shown in Figure 4.29 (that is, edge self-intersection and ambiguity), if the initial and final edge

layouts are monotone and similar. This is shown in the following theorem.

Theorem 4.3.1 In a linear interpolation between twoXY -monotone orthogonal edge

layouts, intermediate edge layouts are alsoXY -monotone.

Consider (without loss of generality (WLOG)) two NE edge layouts with

the same number of segments,

(x1, y1, x2, y2, ..., xn, yn)

and (x′1, y
′
1, x

′
2, y

′
2, ..., x

′
n, y

′
n).

(Differing numbers of segments can be handled with degenerate segments,
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as described below in Section 4.3.3.) The monotonicity means thatx1 ≥

x2 ≥ x3 ≥ ... ≥ xn andx′1 ≥ x′2 ≥ ... ≥ x′n, and respectively fory and

y′. That is, the segments are ordered inx andy, with the same order in the

initial and final layouts. The edge layout is given by linear interpolation,

thus thei-th x coordinate at time0 ≤ t ≤ 1 is

xi + t(x′i − xi) = (t− 1)xi + tx′i,

and similarly fory. Consider thei-th andj-th segments at timet, wherei >

j. Sincexi ≥ xj andx′i ≥ x′j , it is easy to see that any linear combination

of xi andx′i must be greater than or equal to the same linear combination

of xj andx′j , that is,axi + bx′i ≥ axj + bx′j . By choosinga = t − 1 and

b = t, we obtain

(t− 1)xi + tx′i ≥ (t− 1)xj + tx′j

for anyi, j, t; and respectively fory. Therefore, in a linear edge animation

between two edge layouts with the same monotonicity, all intermediate edge

layouts are also monotone in the same way.

The situation for linearly animating between partially similar orthogonal edge layouts is analogous,

except that it proceeds in only one ofx or y, rather than both.

Theorem 4.3.2 In a linear interpolation between two partially similar monotone or-

thogonal edge layouts, the intermediate edge layouts arex or y monotone, according

to the monotonicity shared by the initial and final layout. That is, betweenXY - and

XZ-monotone orthogonal edge layouts, intermediate edge layouts areX-monotone,

and betweenXY - andZY -monotone orthogonal edge layouts, intermediate edge lay-

outs areY -monotone.

Consider WLOG the initial and final edge layouts to be NE- and SE-monotone.

Using the same argument as Theorem 4.3.1, but only for thex values, gives

the following condition for intermediate edge layouts:

(t− 1)xi + tx′i ≥ (t− 1)xj + tx′j
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c

d

a b

Figure 4.33: The general form of a self-intersection.

for anyi, j, t. Thus all the intermediate edge layouts are E-monotone inx.

Furthermore, the following lemmas can also be proved.

Lemma 4.3.3 Monotone orthogonal edge layouts do not self-intersect.

The contrapositive of this is that edge layouts that self-intersect are non-

monotone. The general form of edge layout self-intersection is shown in

Figure 4.33, where the horizontal segmentab intersects the vertical segment

cd, as it is not possible for two horizontal (or two vertical) segments to

intersect. A “glancing” intersection is where one of the endpointsa, b, c

or d lie on the opposite segment, for example (WLOG), wherea lies on

cd. This is essentially the same situation, as the endpointa may simply be

extended beyond the intersecting segmentcd by some arbitrarily smallδ.

To be an edge, it must be that one ofac, ad, bc or bd are joined by some

path of segments. As shown, we assume WLOG thatb, c are joined and the

edge is directed froma to d via b andc. Now ab has orientation E. Since

thex value ofcd is less than that ofb, it must be the case that at least one

W segment exists in the pathbc. Thus, the edge layout is non-monotone in

x. A similar argument holds in they direction.

Lemma 4.3.4 Monotone orthogonal edge layouts do not self-occlude.

Consider WLOG a NE-monotone orthogonal edge layout. We now examine
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thei-th vertical segment; the same argument holds in they direction for the

horizontal segments. The monotonicity property means thatxi ≤ xi+k for

positive integersk < n− i.

In the case wherexi < xi+1, clearly none of the segments afteri can have

the valuexi. Since a necessary condition for self-occlusion is that the two

segments have the same value, self-occlusion does not occur in this case.

In the other case,xi = xi+1 = xi+2 = . . . = xi+j < xi+j+1, for j <

n− i− 1. Here, the segments for1 ≤ k ≤ j have the valuexi but because

they are consecutive, they are merely degenerate, not self-occluding. The

remaining segments (that is, forj + 1 ≤ k ≤ n − i) cannot have the value

xi, sincexi < xi+j+1 as in the previous case. In fact, this shows that the

previous case is simply the special case ofj = 0.

Sincei has been chosen arbitrarily, the edge must be free of self-occlusions.

When Theorems 4.3.1 and 4.3.2 are combined with Lemmas 4.3.3 and 4.3.4, it is clear that

any linear animation between similar or partially similar monotone orthogonal edge layouts do not

contain ambiguities.

Animated Figure 4.34 shows an example linear animation from a SE- to NE-monotone orthog-

onal edge layout.

More care must be taken when animating dissimilar monotone orthogonal edge layouts. Ani-

mated Figure 4.35 shows a linear animation between two dissimilar monotone edges (SE and NW),

where self-intersection occurs during the animation. This is a counter-example to the assertion that

dissimilar monotone edges may be linearly animated without ambiguities, as is the case for similar

and partially similar monotone edges. This problem is solved by defining a simple pseudo-linear

edge animation strategy which reduces the dissimilar case to two partially similar cases. This is

achieved by finding an intermediate edge layoutC, such thatC is partially similar to both the initial

layoutA and final layoutB. For example, ifA is NE andB is SW, thenC is either NW or SE.

It is now possible to animate fromA to C, and then fromC to B, each using linear interpolation.

All that remains is to find a suitable layoutC. This is easily achieved by combining thex segments

from layoutA with they segments from layoutB (or, equivalently, they segments from layoutA

with thex segments from layoutB). This is illustrated in Figure 4.36. Animated Figure 4.37 shows
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Animated Figure 4.34: A linear animation from a SE-monotone to a NE-monotone edge layout.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.35: A linear animation from a SE-monotone to a NW-monotone edge layout, showing
self-intersection in frames 9 and 10. The initial layout is(x=0, y=0, 0,−8, 4,−16, 20,−16) and the final
layout is(x=0, y=0, 0, 2,−7, 10,−8, 10).



4.3 Orthogonal edge animation 131

Initial
Layout

Final
Layout

Intermediate
Layout

Figure 4.36: The SE-monotone to NW-monotone animation from Animated Figure 4.35, animated using an
intermediate SW-monotone layout. The intermediate layout is(x=0, y=0, 0,−8,−7,−16,−8,−16).

this technique applied to the example from Animated Figure 4.35.

4.3.3 Adding and removing segments

It is possible to use linear interpolation for edge layouts where the initial and final layouts have

differing numbers of segments. This can be achieved by insertingdegenerateedge segments at

appropriate positions in the edge layout with fewer segments. These degenerate segments have zero

length, and must be added in adjacent pairs in order to preserve the alternating horizontal-vertical

structure of the orthogonal edge layout. For example, consider the edge(x=0, y=0, 100, 100).

A degenerate segment can be inserted halfway along the first segment, giving the edge(x=0, y=

0, 50, 0, 100, 100). This edge has an additional bend at(0, 50), however, it appears visually identical

to the original edge, as the vertical segment atx=50 has horizontal segments aty=0 on both sides. It

is also possible to insert two degenerate segments at the bend in the original edge, giving(x=0, y=
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Animated Figure 4.37: The orthogonal edge animation problem instance from Figure 4.35, animated using
an intermediate partially similar orthogonal edge layout.

(100,100)

(0,100)(0,0)
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(0,100)(0,0) (0,50)

a c

d

b

(b)
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d
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(c)

Figure 4.38: Insertion of degenerate segments. (a) shows the initial edge layout of two segmentsa andb.
(b) inserts a degenerate segment, splitting the original segmenta into two segmentsa andc, separated by the
zero-length vertical segmentb at y = 50. (c) inserts two degenerate segments at the edge bend between the
original segmentsa andb.
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Animated Figure 4.39: Linear edge animation of inserting and removing an edge segment.

0, 100, 0, 100, 100). Vertical degenerate segments have no clear N or S orientation, but may easily

assume either, depending on how its adjacent segments change. Similarly for horizontal degenerate

segments, which have no clear E or W orientation. As such, the orientation of a degenerate segment

is represented by a dot ‘�’.

This technique can also be used tonormaliseall orthogonal edge layouts so that they start

with an X segment and end with a Y segment (or vice-versa). This is simply done by inserting a

degenerate segment at the start or end of the edge layout, where appropriate. Doing this simplifies

the treatment of orthogonal edge layouts, thus, it is assumed hereinafter, that all orthogonal edge

layouts have been normalised.

When the initial layout has fewer segments than the final layout, degenerate segments are added

to the initial layout. The linear interpolation animation proceeds as before, and the visual effect is
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Figure 4.40: Orthogonal edge animation problem instance showing insertion of an edge segment into the
last segment.
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Animated Figure 4.41: Linear animation of the orthogonal edge animation problem instance from Fig-
ure 4.40, inserting the degenerate segments at the leftmost endpoint.

the smooth insertion of two bends in the animation. In the other case, the final layout has fewer

segments and has degenerate segments added, causing bends to be removed by the animation. Ani-

mated Figure 4.39 shows a simple example of these two cases.

The issue of exactly where to insert the degenerate segments remains. This is important because

inserting degenerate segments away from their final location, can cause large sections of the edge to

“shift”. For example, Figure 4.40(a) shows an edge with four segments, and Figure 4.40(b) shows
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this edge with an additional segment inserted mid-way in the last segment. Animated Figure 4.41

shows the linearly animated transition where the two additional segments are inserted at the start of

the edge. Observe that the majority of segments appear to “slide” from the left to the right, and that

segmentsa, b andc correspond to (or “transform” into) segmentsc′, d′ ande′. In addition, during

the intermediate frames of the animation, the edge layout does not look similar to either the initial

or final frame, despite the similarity between the initial and final frames. Animated Figures 4.42

and 4.43 show better animations of this transition, where segmentsa, b, c, d correspond toa′, b′,

c′, d′. We now present a heuristic method (without proof) for determining where to place inserted

degenerate segments.

The problem has two parts. First, the position of the degenerate segments in the list of segments

must be chosen, that is, each degenerate segment must be added between two existing segments.

Second, the actualx or y coordinate value must be chosen for each degenerate segment.

In order to determine where in the list of segments the degenerate segments should be added, it

is necessary to determine which segments correspond to one another in the initial and final layouts.

This is achieved by using the Longest Common Subsequence (LCS) algorithm. The algorithm takes

as input two strings, and returns the longest possible subsequence which is common to both strings.

We use the orientation strings of the two layouts in question. For the example shown in Figure 4.40,

the LCS algorithm is presented with the following two orientation strings:

E S E N and E S E N W N

a1 a2 a3 a4 b1 b2 b3 b4 b5 b6

giving two different longest common subsequences of length 4:

E S E N or E S E N

a1 a2 a3 a4 a1 a2 a3 a4

b1 b2 b3 b4 b1 b2 b3 b6

It is easy to determine that in the first case the segmentsb5 and b6 are the additional segments,

whereas in the second case the segmentsb4 and b5 are the additional segments. Thus, the two

possibilities are adding the two degenerate segments aftera4, or betweena3 anda4:

E S E N � � and E S E � � N

If these degenerate segments are positioned at the corresponding bends in the edge layout, then the

coordinates are determined by the neighbouring segments:
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E S E N � � and E S E � � N

a1 a2 a3 a4 a5 a4 a1 a2 a3 a4 a3 a4

wherea5 is they value of the endpoint of the edge, that is, where the edge meets the node at that

endpoint. Animated Figure 4.42 shows the linear animation for each of these cases.

In fact, neither of these solutions are particularly desirable, because they both involve more

motion than is necessary. This is the second part of the problem — choosing thex andy values for

each degenerate segment that is to be inserted. In this case, it would be better to place the degenerate

segments mid-way along the segmenta4, at precisely the location ofb5. This is achieved by first

placing the degenerate segments at edge bends, as described above. Doing so causes degenerate

segments to be characterised by identical neighbouring segments. Thus, the edge layout is searched

for triplets of edge segments of the formα, β, α, which identifies the “central” segment (with value

β) as a degenerate segment. The value ofβ is replaced by the value of the corresponding segment

from the longer edge layout, thus moving the degenerate segment from the edge bend to the correct

position along the edge segment. As such, it is easy to see that the final location of the degenerate

segment is independant of the initial location. This is because the degenerate segment is initially

placed at one of the two endpoints of the segment in question, and in both cases, it is detected and

moved to the correct location along the segment.

Returning to the example, doing this in either of the two cases shown in Animated Figure 4.42

gives

E S E N � N

a1 a2 a3 a4 b5 a4

which is shown in Animated Figure 4.43. Clearly, this animation is superior to both of those shown

in Animated Figure 4.42, as in this case there are half as many edges moving, and half as many

edges “growing” (that is, changing length).

In fact, it is possible for there to be many solutions found by the LCS algorithm, not all of

which are equivalent as is the case in Figure 4.42. This is particularly true of monotone sequences

of segments, since the LCS algorithm cannot distinguish between these. Consider an edge with two

segments, and inserting four segments of the same orientations, as shown in Figure 4.44. Now the

LCS algorithm receives as input

N E and N E N E N E

a1 a2 b1 b2 b3 b4 b5 b6
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Animated Figure 4.42: Linear animation of the orthogonal edge animation problem instance from Fig-
ure 4.40, inserting the degenerate segments at either end of the last segment.
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Animated Figure 4.43: Linear animation of the orthogonal edge animation problem instance from Fig-
ure 4.40, inserting the degenerate segments at the appropriate positions, based on the final layout.
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Figure 4.44: An orthogonal edge animation problem instance showing the insertion of four segments into
one.
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giving six solutions of length 2:

N E N E N E

N E � � � �

N � � E � �

N � � � � E

� � N E � �

� � N � � E

� � � � N E

Which of these will be chosen is determined according to a type of distance squared based similarity

metric for each layout. This metric indicates the level of similarity between the edge layout, with

degeneracies added and the original edge layout, without degeneracies. The edge layout with the

lowest metric value is chosen as the edge layout to use. How to compute the similarity metric for

an edge layout is now described.

The final layout of the edge layout with fewer segments, including degeneracies, is compared

to the initial layout of this edge layout. In order to do this, a listc is constructed for the edge

layout with fewer segments, containing the elementsci, for 0 ≤ i ≤ l− 1 (l the length of the LCS).

This is a list of the indicies of the segments in the LCS. Now a listd is constructed for each LCS

solution, which contains the elementsdi, the indicies of the segments in the LCS solution. The

possible values for these elements are0 ≤ ci ≤ n− 1 and0 ≤ di ≤ m− 1, wheren is the number

of segments in the initial edge layout andm is the number of segments in the final edge layout. In

the above example,l = 2, the listc is given by

c0 c1

N E 0 1

and the listd is, for each potential final layout, given by

d0 d1

N E � � � � 0 1

N � � E � � 0 3

N � � � � E 0 5

� � N E � � 2 3

� � N � � E 2 5

� � � � N E 4 5
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The values ofc andd are now converted to be the distance from either endpoint of the edge layout,

that is,c′i = min(ci, n− 1− ci) andd′i = min(di,m− 1− di). The values for the initial layout are

now given by the listc′,

c′0 c′1

N E 0 0

which corresponds to the listsd′ for the final layouts,

d′0 d′1

N E � � � � 0 1

N � � E � � 0 2

N � � � � E 0 0

� � N E � � 2 2

� � N � � E 2 0

� � � � N E 1 0

The similarity metric is given by

S =
l−1∑
i=0

u(ci, di)[(c′i − d′i)
2 + 1]

whereu(ci, di) is defined as 0 if the segments at indiciesci anddi have the same axis and value,

and 1 otherwise.

This metric reflects that edge layouts which have common segments at similar relative positions

are preferred. In addition, the relative position of segments is measured from either endpoint, re-

flecting that it is preferable to keep the endpoints of an edge stable and perform adjustments to the

inner segments. The factoru(ci, di) reflects that segments with the same value do not change (vi-

sually), and so should not incur any penalty. The additional+1 term is included to give preference

to layouts which have more segments with the same value, since the effect is to add to the metric

the number of segments not ignored byu(ci, di).

In the example above, the metric values for each of the final edge layouts is:
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.45: Linear animation of the orthogonal edge animation problem instance from Fig-
ure 4.44, inserting the degenerate segments at the appropriate positions, based on the final layout.

S

N E � � � � 2

N � � E � � 5

N � � � � E 0 *

� � N E � � 10

� � N � � E 5

� � � � N E 2

The chosen layout is marked with an asterisk, and the linear animation transition corresponding to

this choice is shown in Figure 4.45.

A non-trivial example of this algorithm is shown in Figure 4.46, which seeks to animate from

W S E S E N to E N E N W N E N

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6 b7 b8

where the edge segmentsa4, a5 anda6 have the same values asb2, b3 andb6, respectively. This has

two distinct longest common subsequences of length 3, “EEN” and “WEN”. The specific solutions

in each of these two cases are considered separately, and their associatedci, di andS values are
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a 1

a 2
a 6

a 5

a 3

a 4

(a) WSESEN

b 1

b 2

b 3

b 4

b 6

b 7
b 8

b 5

(b) ENENWNEN

Figure 4.46: A non-trivial orthogonal edge animation problem instance.

“EEN” case, Initial:

W S E S E N c0 c1 c2 c′0 c′1 c′2

� � E � E N 2 4 5 2 1 0

“EEN” case, Final:

E N E N W N E N d0 d1 d2 d′0 d′1 d′2 S

E � E N � � � � 0 2 3 0 2 3 15

E � E � � N � � 0 2 5 0 2 2 5

E � E � � � � N 0 2 7 0 2 0 6

E � � � � � E N 0 6 7 0 1 0 7

� � E � � � E N 2 6 7 2 1 0 3 *

“WEN” case, Initial:

W S E S E N c0 c1 c2 c′0 c′1 c′2 S

W � E � � N 0 2 5 0 2 0 13

W � � � E N 0 4 5 0 1 0 12

“WEN” case, Final:

E N E N W N E N d0 d1 d2 d′0 d′1 d′2

� � � � W � E N 4 6 7 3 1 0
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.47: Linear animation of the orthogonal edge animation problem instance from Fig-
ure 4.46.

As shown, the best value ofS is the last solution in the “EEN” case, and the linear animation of this

case is shown in Animated Figure 4.47.

4.3.4 Non-monotone edge layouts

This section deals with the animation of general edge layouts, that is, edge layouts that are not

necessarily monotone. Simply applying the techniques from Section 4.3.2 to non-monotone layouts

can easily cause ambiguities during the animation. As mentioned in Section 2.2.3, the edge routing



144 Relational Data

algorithm used is the Tom Sawyer Visualisation 6.0 software, which orthogonally routes the edges

in the presence of the previously placed nodes. The edge routes found by this algorithm have

the property of being shortest orthogonal paths between the nodes2. It has been shown that shortest

orthogonal paths in the presence of rectangular barriers are always monotone in eitherx or y or both

[30] (that is, the nodes of the inclusion tree layout are considered to be “barriers,” around which

the edges must be routed). As such, it is not necessary to consider the animation of non-monotone

edges in this study. Nevertheless, for completeness we now present a simple heuristic algorithm

for solving the Orthogonal Edge Layout Animation Problem for general (that is, non-monotone)

edge layouts. This algorithm reduces the problem to the previously solved case of monotone edge

layouts. However, as it is a heuristic, there are some cases for which it does not perform optimally,

as described at the end of this section. Finding an efficient solution to this problem remains an

interesting open problem. It consists of three broad stages:

Stage 1: Detection and animated removal of non-monotonicities in initial edge layout.

Stage 2: Linear animation of the resulting monotone edge layout.

Stage 3: Animated insertion of appropriate segments to reach the final (non-monotone)

edge layout.

In fact, Stages 1 and 3 are effectively the same. This is because Stage 3 can be solved by

applying the method for Stage 1 to the final layout and time-reversing the resulting animation. This

has the effect of inserting the non-monotonicities, rather than removing them. Thus, the overall

algorithm is actually:

Stage I: ObtainA′ by removing all non-monotonicities from the initial layoutA.

Stage II: ObtainB′ by removing all non-monotonicities from the final layoutB.

Stage III: Animate fromA toA′ (non-monotonicity removal).

Stage IV: Animate fromA′ toB′ (monotone linear animation).

Stage V: Animate fromB′ toB (non-monotonicity insertion).

The linear animation in Stage 2 (Stage IV) merely animates the monotone orthogonal edge lay-

outs as previously described. The method for Stage 1, the animated removal of non-monotonicities

in an orthogonal edge layout, is now described.
2This may not necessarily be the case if constraints have been used to force edges to attach to particular sides of

nodes, however, constraints have not been used in this study.
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s1
s2

s3
s4

s5

Figure 4.48: A simple non-monotonicity.

Removal of non-monotonicity has the following straightforward algorithm:

while E is not monotone do:

Find a simple non-monotonicity

Remove it

A non-monotone sequence of segments in an orthogonal edge layout is called anon-monotonicity.

A non-monotonicity issimple if it contains no sub-sequences which are non-monotone, that is,

if it contains no further non-monotonicities. Non-monotonicities which are not simple are called

compound.

Testing for monotonicity (as in the condition of the while-loop) is simple. The method for

locating a simple non-monotonicity is a linear search through the segments. The search looks for

patterns of segments of the form:

E S E N E or N E N W N

s1 s2 s3 s4 s5 s1 s2 s3 s4 s5

More generally,s2 ands4 must be in opposite directions,s1, s3 ands5 are in the same direction,

ands1 ands5 may be absent (for example, at the start and end of the edge layout). (The search will

generally considers2 to be the “current” segment, examining the other segments relative to it.) The

form is shown in Figure 4.48. In addition,s1 may be in the opposite direction tos3, but only if the

length ofs2, denoted by|s2| is greater than that ofs4, that is,|s2| > |s4|. Similarly, s5 may be

opposite tos3 if |s4| > |s2|. It may never be the case that boths1 ands5 are opposite tos3.

Once found, the simple non-monotonicity is removed. This is done by setting the value ofs3 to

be the nearer ofs1 or s5, that is,

s3 =

 s1 if |s3 − s1| < |s3 − s5|

s5 if |s3 − s1| ≥ |s3 − s5|
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s1 s2 s5s3

(a)

s1 s3 s5

(b)

Figure 4.49: The result of removing the simple non-monotonicity from Figure 4.48. The previous layout is
indicated by dashed lines.

(If either s1 or s5 are absent, then the value of the endpoint where the segment meets the node is

considered in its place.) This causess2 or s4 to become degenerate, allowing the removal ofs3

and either ofs2 or s4 as appropriate. This is shown in Figure 4.49(a). Ifs1 ands5 have the same

value, then whens3 is set to that value boths2 ands4 will become degenerate, allowing the removal

of s2, s3, s4 ands5. Figure 4.49(b) shows this special case.

This removal operation is quite simple to animate — simply linearly interpolate the value of

s3 from its initial value to the value ofs2 or s4 as appropriate. An animation of this is shown

in Animated Figure 4.50(a), with Animated Figure 4.50(b) showing the special case illustrated in

Figure 4.49(b).

The output of the algorithm is correct, because the condition on the while-loop means that the

result is a monotone orthogonal edge layout. The loop must terminate because, as will be shown,

the non-monotonicity search finds a simple non-monotonicity if the edge layout is non-monotone;

removal of a simple non-monotonicity causes a non-monotone sub-section of the edge layout to

become monotone (clearly seen in Figure 4.49), thus the number of simple monotonicities present

is reduced by 1.

That the search must find a simple non-monotonicity if the edge layout is not monotone is

now proven. To do this, it is shown that in every compound non-monotonicity there exists at

least one simple non-monotonicity, and that this is found by the search. By considering the

entire non-monotone edge layout to be a compound non-monotonicity, it is seen that a simple non-

monotonicity exists and must be found. If the edge layout is still not monotone after removing this

simple non-monotonicity, then the process repeats until monotonicity is obtained, completing the

proof of the algorithm.
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(a)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(b)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.50: The orthogonal edge animation removing the simple non-monotonicity from Fig-
ure 4.49.
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Theorem 4.3.5 A compound non-monotonicity in a non-ambiguous edge layout must

contain at least one simple non-monotonicity.

First, assume that the compound non-monotonicity does not contain any

degeneracies. This is because, by their very nature, degeneracies do not

affect the visual appearance of the edge layout, and thus have no bearing

on the monotonicity (or otherwise) of the edge layout. Any degeneracies

present may easily be removed by an initial pre-processing stage.

Consider the vertical segments of the compound non-monotonicity. Since

it is non-monotone, there must be at least one N segment and at least one S

segment, giving it the form:

? . . . ? N ?. . . ? S ?. . . ? or

? . . . ? S ?. . . ? N ?. . . ?

These two forms are equivalent, so assume WLOG the former. The vertical

segments between the N and S segments above must each be either N or S.

Clearly, there must be at least one position between them that has the form

?N?S?, that is,s1Ns3Ss5 using the notation in the simple non-monotonicity

definition. (If all the intermediate vertical segments are N, then this occurs

at the end, and if all the intermediate vertical segments are S, then this oc-

curs at the beginning.) Now assume WLOG thats3 = E (since the situation

for s3 = W is symmetric), that is,s1NESs5 . This leaves three distinct

cases:

Case 1:This is the case where the three remaining segments have the same

orientation, that is,s1 = s3 = s5, or ENESE. This trivially matches the

criteria for being a simple monotonicity.

Case 2:This is the case where one of the three remaining segments has the

opposite orientation, that is,s1 = s3 = s5 (ENESW) ors1 = s3 = s5

(WNESE), where notationallyN = S, S = N, E = W, W = E. Since

both of these cases are identical by symmetry, assume WLOG the former,

that is, ENESW. As stated in the definition of a simple non-monotonicity,

this is simple if |s2| < |s4|. This leaves the case where|s2| ≥ |s4|, as
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Figure 4.51: The case where|s2| ≥ |s4| in Case 2 of Theorem 4.3.5.

shown in Figure 4.51. Attempting to removes3 directly causes an ambi-

guity, wheres3 self-occludess1, as shown in Animated Figure 4.52. Since

the edge layout is not ambiguous, simple geometry means that|s1| < |s3|,

because|s2| < |s4|. Thus, in fact, the algorithm must previously have con-

sidereds0s1s2s3s4, which is a non-monotonicity that must be simple (by

case 2, sinces0 = s2 = s4 and|s1| < |s3|). Animated Figure 4.53 shows

the edge removal which actually takes place in this case.

Case 3:This is the case wheres1 ands5 both have opposite orientations to

s3, that is,s1 = s3 = s5, or WNESW. This case is shown in Figure 4.54,

and it is explicitly stated in the definition of simple non-monotonicities that

this case is not simple. Removings3 directly causes an ambiguity where

s3 self-occludess1 if |s2| < |s4|, s5 if |s2| > |s4|, and boths1 ands5 if

|s2| = |s4|, as shown in Animated Figure 4.55. Ifs0 is in the same direction

as s2, then the algorithm finds the simple non-monotonicitys0s1s2s3s4,

which satisfies case 2. Ifs0 is opposite tos2, thens0 and s4 are oppo-

site tos2, and it is possible to recursively consider the non-monotonicity

s0s1s2s3s4. This recursion continues until eithers0 is in the same direc-

tion ass2, or the end of the edge is reached. In the former case, the non-

monotonicity under consideration is clearly simple (as above), and in the

latter, the non-monotonicity is simple because the absence ofs0 satisfies

the simple non-monotonicity definition. Once this non-monotonicity has

been removed, the previously considered one will also then be able to be
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1 2 3 4
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13 14 15 16

Animated Figure 4.52: Linear animation which attempts to directly removes3 from the case shown in
Figure 4.51, causing self-occlusion betweens1 ands3 in the last frame.

removed, by the same argument (that is, this recursive application of Case

3 will then “unwind”). The situation is trivially similar for the edge seg-

mentss2s3s4s5s6. Animated Figure 4.56 shows how the example from

Figure 4.54 is actually animated.

The situation when considering horizontal segments is identical to the treat-

ment above of vertical segments. Thus, a non-ambiguous compound non-

monotonicity must contain at least one simple non-monotonicity, which will

be found by the algorithm.

Thus, this theorem shows that the algorithm presented is correct, and it will repeatedly detect

and remove simple non-monotonicities from the edge layout until it is monotone.
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Animated Figure 4.53: Linear animation which correctly removess2 from the case shown in Figure 4.51.
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Figure 4.54: Case 3 of Theorem 4.3.5.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Animated Figure 4.55: Linear animation which attempts to directly removes3 from the case shown in
Figure 4.54, causing self-occlusion betweens1 ands3 in the last frame.

A pathological example of non-monotonicity is a “spiral”, as shown in Figure 4.57. The only

simple non-monotonicity is the inner-most one; removing it causes there to still only be one inner-

most simple non-monotonicity. Animated Figure 4.58 shows the animation of the monotonisation

of this edge layout.

This example makes it clear that the runtime performance of the algorithm isO(n2), for an

edge layout withn segments. This is because in the worst case, it may be that the only simple non-

monotonicity is at the end of the edge layout, requiringO(n) segments to be examined to find (and

remove) it. Up toO(n) passes may be required through the edge layout (that is, there may beO(n)

simple non-monotonicites that the algorithm is required to remove), giving the overall performance

of O(n2). It is easy to see that a lower bound on the performance of this edge monotonisation
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Animated Figure 4.56: Linear animation which correctly removess2 from the case shown in Figure 4.54.

Figure 4.57: A spiral pathological case for removing non-monotonicities.
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Animated Figure 4.58: Orthogonal edge animation showing the monotonisation of the pathological spiral
from Figure 4.57.
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Figure 4.59: A problem associated with the removal of non-monotonicities in orthogonal edge layouts which
are not monotone inx or y.

problem isO(n), since each segment must at least be considered to be part of a non-monotonicity

(lest an adversary change a segment that is not examined by a sub-linear-time algorithm). Although

the performance of our algorithm is not close to this best case, it is adequate for our purposes

because the value ofn can reasonably be expected to be small, that is,n . 10. In fact, in the vast

majority of instances,n ≤ 5.
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However, there are still some situations where self-intersection is not prevented by this simple

algorithm. Consider the orthogonal edge layout shown in Figure 4.59(a). The segment sequence

abcde matches the criteria, and so segmentc is removed, resulting in the orthogonal edge layout

shown in Figure 4.59(b). A better sequence to consider isdefgh or ghij, removingf or i re-

spectively. This situation only arises for edges which are not monotone inx or y. A thorough

treatment of this is beyond the scope of this thesis (because, as described at the start of this sec-

tion, non-monotone edges are not encountered in this study). One straightforward way of dealing

with the problem would be to search the remaining segments for intersections with the segment

being proposed for removal, although this is clearly inefficient. It may also be possible to prove the

correctness of some sort of heuristic, for example, always removing the shortest possible segment

first (which would removef in the example above). Devising an efficient algorithm for removing

non-monotonicities without creating self-intersections is left as an interesting open problem.

The original counter-example to linear interpolation of non-monotone orthogonal edge layouts,

Figure 4.28, is shown animated using this algorithm in Animated Figure 4.60. This is clearly

superior to the previously shown animations for it in Animated Figures 4.29 and 4.31.

4.3.5 Expanding and collapsing nodes

The final consideration, is the treatment of orthogonal edge layouts during the operations of expand-

ing and collapsing cluster nodes. As previously, only the expanding of nodes is considered, with

node collapsing being the obvious time-reversed animation. In this case, each meta-edge, adjacent

to a node being expanded, is representative of one of more edges (which may also be meta-edges, or

may be actual edges) that are to be revealed by the node expand operation. The Structural Zooming

technique precomputes the layout after the node has been expanded, and identifies thesub-edges

represented by each adjacent meta-edge. Onetemporary edge layoutis constructed for each sub-

edge, and the animation proceeds so that this temporary edge layout is animated from the initial

meta-edge layout, to the particular sub-edge with which it is associated. Thus, the overall effect is

of meta-edges “splitting” into several actual edges during the course of the animation. Similarly,

when collapsing nodes, the sub-edges appear to “coalesce” into a single meta-edge. Animated

Figure 4.61 shows an example animation of collapsing a node.

While this technique adequately deals with the meta-edges, it does leave the ends of the tempo-

rary edge layout “dangling” inside the expanding and collapsing nodes, that is, they are not directly

incident on the boundary of any node. This is often an undesirable situation for a graph drawing,
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Animated Figure 4.60: Orthogonal edge animation of the problem instance from Figure 4.28, animated
using the edge animation strategy for non-monotone edge layouts.

however, it is adequate for our purposes. This is because the structure of the data is still maintained,

since the edge endpoints are within the expanding (or collapsing) node (which has not yet com-

pleted the expand (or collapse) operation). For applications where this may be a problem, there are

two possible solutions, both of which involve animating the child nodes in addition to the temporary

edge layouts. Considering the expanding node case, in the first solution, the child nodes are initially

the same size as their parent node, and their size and position simply animates linearly to their final

position. (As always, the case of a collapsing node is simply the reverse of this.) This maintains

the incidence of the temporary edge layouts against their respective child nodes, however, it has

the disadvantage of significant occlusion between child nodes early in the animation. The second

solution addresses this: atemporary node layoutis created for each meta-edge incident to a child

node. The initial size of this temporary node is given by the final size of the corresponding child
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Animated Figure 4.61: An example orthogonal edge animation of meta-edges incident to an expanded
node.

node, multiplied by the ratio of the initial to final size of the parent node3. The initial position of

the temporary node is such that it is incident to the respective meta-edge, and the final position is

that of the respective child node. Thus, while temporary child nodes that share a meta-edge will

initially occlude one another, this occlusion will be short-lived as the nodes move toward their final

positions. However, the disadvantage with this solution is that there is now also occlusion at the end

of the animation, as the temporary nodes for a child node all converge on the same final position.

4.4 Evaluation framework

As described in Section 3.4, there are many possible ways of evaluating Structural Zooming. The

application of Structural Zooming to relational data presented in this chapter has a large number

of independant parameters, such as the layout algorithm, the tip-over and inclusion layout styles

for trees, the parameters for the edge routing algorithm, the choice of data content measure and

maximum detail threshold value. The “design space” formed by these parameters is evaluated with

3Although it is not possible to multiply two ‘sizes’ or take their ratio, here we are referring to these operations applied
to both the width and the height.
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an empirical investigation, running a series of experiments using a corpus of relational data input

and navigation data input. Each experiment varies one parameter to be tested, and records the values

of several different empirical measures for gauging the quality of the visualisation and animation

for each operation performed.

As this evaluation is empirically based, the applicability of the results to real systems depends

on two implicit assumptions:

Corpus validity requires the corpus of relational and navigation data to be indica-

tive of those found in real systems.

Measure validity requires the empirical measures to be representative of the as-

pects that actually influence human understanding.

It is thought here that both of these assumptions hold. For corpus validity, care has been taken to

ensure that the corpus data is sourced from a variety of real-world applications. This includes the

navigation data, which is derived from both human and modelled sources. The application domains

are Design Behaviour Trees, described in Chapter 5, Software Views, described in Chapter 6, and

Citation Networks, described in Chapter 7. The corpus data in each application domain has been

selected to ensure good coverage of the design space parameters.

For measure validity, we have used three fundamental categories to intuitively select formal em-

pirical measures. These categories embody the possible ways in which the quality of an animation

may be determined.

Static: The quality of each frame can be assessed individually, as though it were

a static image and not part of an animation. This is justified by the fact that

in an animation comprised of statically low quality frames, the quality of the

overall animation itself is unlikely to be high. Static quality measures include

all classical graph layout quality and aesthetic measures.

Endpoints: The initial and final frames of the animation largely determine the an-

imation that must take place between them. Initial and final frames which

are very different, will generally require large changes (that is, large amounts

of movement) in order to animate between them. Similarly, initial and final

frames which are similar will generally require only small changes during the

animation. Since animations should be as simple as possible, the quality may
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be considered to be inversely proportional to the difference between the ini-

tial and final frames. This may be expressed in general asQ(n − 1, 0), for

a quality measureQ which compares the(n − 1)-th (final) frame to the0-th

(initial) frame.

Dynamic: The final way in which an animation may be judged is by considering the

“dynamic” changes between each pair of successive frames. This builds upon

the previous category by evaluating the actual changes that occur during the

animation. This is necessary because it is possible to have a poor animation

(for example, one with much unnecessary movement) between very similar

initial and final frames, with each intermediate frame having high static qual-

ity. Using the notation from the previous category, this may be expressed in

general as
n−1∑
i=1

Q(i, i− 1)

The evaluation measures used draw heavily on existing principles from the field of information

visualisation (for example, [23, 32, 45, 54, 55, 101, 125, 173]), the “minimalist” principles of

good design (most notably, [159, 160, 161]) and the fields of perceptual and cognitive psychology

(for example, [17, 99, 126, 166]). In particular, several of the measures are directly related to

or inspired by Friedrich’s empirical graph animation quality measures [54, 55]. The validation

of these measures would be the subject of a formal user-study. However, due to the number of

independant parameters this is a considerable task that falls outside the scope of this thesis. Instead,

the evaluation measures are justified with referencing appropriate existing literature.

This section presents the empirical measures that are used in the experiments in Chapters 5, 6

and 7.

4.4.1 Minimise layout size (MMLS)

This is a static measure which is an indication of the quality of the node layout produced. Thesize

of a layout (sometimes referred to as thecompactnessor resolution), is an important graph drawing

aesthetic [32, 125, 173]. This is because the detail-context tradeoff (discussed in Section 1.1) means

that the smaller the layout size, the larger the detail is on a fixed size display.

The layout size is computed by taking the size of the window enclosing the layout, in the same
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Figure 4.63: The difference between two
orthogonal ordering regions is the smallest
number of regions which must be traversed
to go from one region to the other. Pathα
traverses 2 regions, while pathβ traverses
4 regions, thusrd(a, b) = 2.

(arbitrary) units as the leaf node sizes (which are fixed). The window is the physical viewport used

on the display to show the layout: defining the measure this way, rather than taking the size of the

root node, takes into account blank space caused by a mismatch in display and root node aspect

ratios. Note that when the display zooms in, we still take the size of the window, rather than the

size of the root node or the top-level node being displayed. This gives an accurate indication of the

level of on-screen detail shown, in consistent units (ie. the leaf node units).

The “size” of a rectangle is taken to be the perimeter of the enclosing window. Since the layout

is fitted into the window, this is equivalent to the smallest enclosing rectangle of the display aspect

ratio. As empirically shown in Section 2.3, this is considered to be the most stable and useful size

measure for rectangles.

The measure is computed for the final frame of each animation.

4.4.2 Orthogonal ordering (MOO)

This measure evaluates the changes in orthogonal ordering between the initial and final layouts of

an orthogonal edge animation. As its name suggests, the orthogonal ordering considers the sorted

order of nodes in thex andy axes. This has been found in previous studies to be strongly correlated

with the user’s mental map [23, 101]. As such, it is better if this ordering is preserved as much as
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possible between the initial and final frames of the animation.

As in Section 4.2.1, theorthogonal ordering regionsare defined to surround a rectangle, as

shown in Figure 4.23. However, in this case the regions are numbered in a circular fashion, as

shown in Figure 4.62. Theregion numberof a pointP with respect to a rectangleR is denoted by

r(R,P ). For a nodeu, the bounding rectangle in the initial layout isR(u) and in the final layout

isR′(u). The center point in the initial layout isP (u) and in the final layout isP ′(u). Theregion

differencebetween two orthogonal ordering regions,rd(r1, r2), is the smallest number of regions

which must be traversed to go between the two regions.

rd(r1, r2) = min((r1 − r2) mod 8, (r2 − r1) mod 8)

wherer1 andr2 are region numbers. This is shown in Figure 4.63.

The orthogonal ordering difference of a set of nodesU is

d(U) =
∑∑
u,v∈U

rd(r(R(u), P (v)), r(R′(u), P ′(v))).

For the node-link layout convention, the measure is given by

MOO = d(V ),

whereV is the set of all nodes. For the inclusion layout convention, the measure is given by

MOO =
∑
v⊂V

v expanded

d(C(v)),

whereC(v) is the set of child nodes of the expanded nodev.

In all cases, off-screen nodes are completely ignored.

4.4.3 Minimise transient occlusions (MMTO)

This measures the amount of overlap between nodes during the course of the animation. Nodes

that occlude each other are almost always avoided by classical graph drawing algorithms [32],

and when they are considered, significant effort is expended to remove the occlusions [101]. This

measure is very similar to Friedrich’s “Unnecessary Node Intersection” measure [54, 55]. It is
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Figure 4.64: Normalised screen coordinates,−1 ≤ x ≤ 1,−1 ≤ y ≤ 1.

also similar to the “Temporary Edge Crossings” measure in that it considers transient problems

during the animation. This measure is computed for each frame and then summed over the whole

animation.

MMTO =
∑∑
u,v∈V
u>v

a(u, v)|R(u) ∩R(v) ∩R(S)|.

whereu > v indicates that each pairu, v should only be computed once (that is, it is an unordered

pair),R(u) andR(v) are the regions occupied by those nodes,R(S) is the region occupied by the

screen,|R| indicates the area of the regionR, anda(u, v) is defined as 0 if a descendant-ancestor

relationship exists betweenu andv, and 1 otherwise.

4.4.4 Minimise motion (MMM)

This is a measure of the amount of on-screen movement during an orthogonal edge animation. This

is based on the idea that it is easier for humans to follow the motions of the nodes and edges when

these motions are small (and therefore slow). As well as being intuitively sound, it is based on

Friedrich’s “Node Path Length” measure [54, 55], which reflects the idea that the distance travelled

by nodes should be as short as possible. This measure considers the distance moved by nodes and

edges between each pair of frames. It is given by

MMM =
∑
v∈V

d(P (v), P ′(v)) +
∑∑

e∈E,s∈S(e)

|P (s)− P ′(s)|,
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whered(p1, p2) is the Euclidean distance betweenp1 andp2, E is the set of all edges andS(e)

is the set of segments of edgee. It is assumed that, for each edge, the number of segments in the

initial and final layouts is the same, as described in Section 4.3.3. The pointsP (v), P ′(v), P (s)

andP ′(s) are first normalised to screen coordinates, as shown in Figure 4.64.

4.4.5 Minimise motion groups (MMMG)

This measure is similar to the Minimise Motion measure, except that it is concerned with how the

motion is grouped. This is because perceptual psychology research has shown that humans are able

to combine the movements of distinct objects that have similar velocities [17, 34, 97, 99, 105], and

are able to track up to four concurrent movements with little cognitive overhead [126]. Thus, a

measure which gauges how well the movements of the various objects can be grouped into four, is

sought.

Consider the collection of velocity vectors for each node and edge segment, computed as the

Euclidean distance between the previous frame and the current frame, as in the Minimise Motion

measure. This collection of vectors, each an ordered pair of real numbers, is then clustered in the

plane using the Teitz-Bart (TB) heuristic for solving thek-medoids problem (also known as the

p-median problem) [45, 156]. The number of clusters is set to 4, and the clustering process assigns

each velocity vector to one of these clusters. The goal of thek-medoids problem is to minimise the

quantity

M(C) =
n−1∑
i=0

d(pi, repC(c(pi)),

whereP = {p0, p1, ..., pn−1} is a collection ofn points in the plane,c(p) is the cluster pointp

belongs to, andrep is therepresentativepoint of the cluster, which must be an element ofC. The

setC is the collection of representative points, one per cluster, and must be a subset ofP . Clearly,

every point must be assigned to the cluster with the closest representative point. The clustering

algorithm optimises the choice ofC in order to minimiseM(C).

However, the value ofM(C) is sensitive to the initial random assignment of points to clusters

and the order in which points are considered when updating the cluster representatives. If this is

not considered, then the clustering obtained is not deterministic, and is therefore not useful in an

emperical measure. As such, the seed of the random number generator used by the algorithm is

fixed for each corpus instance, and the nodes of the instance are always considered in the same

order. In this case, the quantityM(C) is a good indication of the quality of the clustering [45, 75].
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Thus, the value ofM(C) at the completion of the TB heuristic with four clusters is used as the

value for the Minimise motion groups measure, and

MMMG = M(C).

4.4.6 Preservation of topology (MPOT)

This measure considers the embedding of the clustered graph in the plane, that is, the edge crossings

which occur, and the faces created by nodes and crossings, collectively referred to as ‘the topology’.

Edge crossings have been found to be a very important graph drawing aesthetic [32, 125], in that

minimising the edge crossings helps to maximise the user’s understanding of the graph. However,

this measure is not concerned with minimisation of crossings. Rather, it is concerned with the min-

imisation ofchangesin topology, or thepreservationof the topology, and so the measure incurs

a positive penalty whenever the topology changes. In this way, it is similar to Friedrich’s “Tem-

porary Edge Crossings” measure [54, 55], which is concerned with edge crossings induced during

the course of the animation. It is also related to the “Constant Edge Length” measure, in that it

seeks to preserve a property throughout the animation. Previous work has investigated the use of

constraints (both user-specified and system-generated) to preserve properties such as the topology

when changing a graph drawing [23]. The measure consists of two sections, incident edge ordering

around each node, and edge crossings.

The edge ordering section examines each node and sorts the incident edges according to their

order around the boundary of the node. This is used to compute the edge order in the current layout

as a permutation of the edge order in the previous layout. This is represented as a permutation of

the integers{1, 2, ..., n}, denoted bypi, where1 ≤ i ≤ n and1 ≤ pi ≤ n, for n incident edges.

We define thecyclic distancebetween two permutationsq andr as

d(q, r) =
n−1
min
k=0

(
n∑

i=1

(qi − r(i+k) mod n)2
)
,

that is, the minimum sum of the squared differences between the elements of the permutations, over

all possible cyclic rotations of one of the permutations. In this case, the interest lies ind(I, p),

whereIi = i is the identity permutation. Thus, the edge ordering part of this measure is given by

MPOTa =
∑
v∈V

d(I, p(v)) ,
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wherep(v) indicates the permutation in edge order for nodev.

The edge crossings section of the measure considers edges and segments which cross. Each

pair of segments which cross is called asegment crossing. Clearly, a pair of segments may ei-

ther cross once or not at all. Thesegment crossing orientationis the concatenation of the ori-

entations of the segments that cross. Since crossing segments cannot both have the same axis,

the y segment orientation is listed first, giving the set of possible segment crossing orientations

B = {NE,NW,SE,SW}.

The total number of segment crossings between edgese1 ande2 in the previous layout is denoted

by n(e1, e2), and in the current layout byn′(e1, e2). This is 0 if edgese1 ande2 are distinct and do

not cross. The number of segment crossings of orientationb in the previous layout is denoted by

nb(e1, e2), and in the current layout byn′b(e1, e2), whereb ∈ B.

The number ofunchangedsegment crossings between edgese1 ande2 is given by

Nu(e1, e2) =
∑
b∈B

min
(
nb(e1, e2), n′b(e1, e2)

)
The number ofchangedsegment crossings is given by

Nc(e1, e2) = min
(
n(e1, e2), n′(e1, e2)

)
− nu(e1, e2) +

∣∣n(e1, e2)− n′(e1, e2)
∣∣

= max
(
n(e1, e2), n′(e1, e2)

)
− nu(e1, e2)

The first term is the smaller number of segment crossings, minus the number of unchanged segment

crossings — that is, the number of segment crossings which have changed. The second term is the

difference in the number of segment crossings — that is, the number of segment crossings which

have been added (or removed, as appropriate).

Now the value of the measure is the square of the number of changed segment crossings,

summed over all pairs of edges.

MPOTb
=
∑∑
e1,e2∈E

Nc(e1, e2)2

Finally, the overall measure is simply the addition of these two sections

MPOT = MPOTa +MPOTb
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4.4.7 Preservation of bends (MPOB)

This is similar to the Preservation of Topology (MPOT) measure, except that it is concerned with

thepreservationof bends, rather than their minimisation. For orthogonal drawings, bends are also

linked to user understanding, but not as strongly as crossings [32, 125], and as such, their preserva-

tion during the animation is also expected to be beneficial. However, the removal of an orthogonal

edge clearly reduces the visual complexity of the visualisation (since three consecutive segments

are smoothly reduced to one, by the “middle” segment shrinking to zero length). Thus, this measure

introduces the relaxation that removing a bend is not as bad as inserting a bend. It examines all

corresponding pairs of edge segments between the previous layout and the current layout. If the ori-

entations are the same, then the segment has not changed orientation, and so no penalty is incurred.

If the orientation of the segment in the current layout is ‘�’ then a segment has been removed, and a

penalty of 1 is incurred. If the orientation of the segment in the previous layout is ‘�’ then a segment

has been inserted, and a penalty of 2 is incurred. Otherwise, the segments must be opposite, that is,

N and S, or E and W, indicating that the segment has “flipped”. This corresponds to removing and

then re-inserting the segment, however, as it happens in a short space of time, is it known that the

segment is not being removed permanently and will return immediately in the same position, thus,

a penalty of 2 (rather than 3) is incurred.

The measure is given as

MPOB =
∑∑

e∈E,s=S(e)

f
(
b(s), b′(s)

)

whereS(e) is the set of segments in edgee, b(s) is the orientation ofs in the previous layout and

b′(s) the orientation in the current layout. The functionf indicates the penalty associated with

particular segment orientation changes, and is defined as

f
(
b, b′
)

=



0 if b = b′

1 if b′ = �

2 if b = �

2 if b = b′

whereN = S, S = N, E = W, andW = E.
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4.5 Navigation strategies

As described in Section 3.4, “navigation strategies” are a hybrid method of obtaining navigation

paths through each corpus data file. The navigation strategies are models for testing, devised intu-

itively after examining real navigations through the data. They are designed to be used for compar-

ing the independant parameters in the application of Structural Zooming to relational data, under

conditions that are sufficiently similar to real-world navigations.

Navigation strategies operate by repeatedly selecting nodes to expand. If the selected node is

inside the current zoomed-in display, it is expanded, otherwise, the display is zoomed out by a

single level. Generally, navigation strategies run until their natural completion, but they may also

be set to run until a predetermined number of nodes have been visited.

4.5.1 Target node - perfect

This navigation strategy pre-selects a single distinguished node known as thetarget node. This is

the node which the hypothetical user is searching for. This strategy always selects the collapsed

node which is an ancestor of the target node. This continues until the target node is displayed. Note

that the target node is usually a leaf node, although it need not be.

4.5.2 Target node - normal

This navigation strategy is similar to the “perfect” target node strategy, except that the choice of

node is probabalistic — there is a certain chance of selecting the correct collapsed node, and a

certain chance of making a “mistake”. The particularmistake modelused is as follows. There is a

2/3 chance of immediately selecting the correct node. In the remaining1/3, the collapsed nodes

are arranged into an array and sorted by their graph theoretic distance from the correct node. An

index into this array is selected using a Gaussian normal distribution, scaled such that 3 standard

deviations (99.7% confidence interval) is at the end of the array4. Thus, the chance of choosing a

node far away from the correct one decreases exponentially, and there is still a significant chance of

selecting the correct node, compared to other nodes.

4In the rare case of an index past the end of the array being selected, the last element of the array is used.
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4.5.3 Random

This navigation strategy is simply a random walk through the clustered graph. For each operation,

a collapsed node is selected from the clustered graph at random. This continues while there are

collapsed nodes to choose from.

4.6 Conclusion

This chapter has presented the application of Structural Zooming (described in Chapter 3), to the

relational data types of trees and clustered graphs (described in Chapter 2). First, the Structural

Zooming technique was presented for h-v trees in the inclusion and node-link styles. This involved

the definition of detail increasing and decreasing operations as the opening and closing of cluster

nodes and level zooming in and out. Animations were presented for these operations, as well as for

changing the layout from horizontal to vertical and vice-versa. The Structural Zooming technique

was applied to arbitrary inclusion layouts with the Stable Jewellery Box Inclusion Layout Algorithm

to minimise layout changes. It was extended to clustered graphs by considering the animation of

orthogonal edge layouts in arbitrary inclusion tree layouts. Empirical measures were presented for

assessing the quality of the transitions in the Structural Zooming of relational data. Finally, some

navigation strategies were presented for modelling user navigation through tree and clustered graph

Structural Zooming.
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Design Behaviour Trees

The first empirical case study of Structural Zooming is that ofDesign Behaviour Trees(DBTs). Sec-

tion 5.1 introduces and describes DBTs as they are used in this investigation. Section 5.2 describes

the data source for the investigation, how the data is represented within the Structural Zooming

system, and sets out the experimental design of the empirical investigation. Finally, Section 5.3

presents the results. The conclusions derived from this investigation are analysed and interpreted in

Chapter 8, along with those presented in Chapters 6 and 7.

5.1 Background

Design behaviour trees(DBTs) provide representations of behavioural requirements in software en-

gineering, developed by Dromey [36, 37]. They are constructed by composing the behaviour trees

for each functional unit of a software system, according to a set of well-defined rules. They effec-

tively allow the software system to be built directly from its functional requirements, rather than

the more traditional activity of building a system that happens to satisfy those requirements. Each

transformational step, from the natural language requirements specification document through to

skeletal source code for the system design, is deliberately constructed to be deterministic, auditable

and expose design flaws as soon and clearly as possible. Design behavour trees are an important

intermediate stage in this process.

The motivation behind such research is clear — software engineering has a history of being

particularly poor in terms of its ability to effectively design and develop “quality” software, that

is to say, software low in defects, security flaws, inefficiencies, and the like. The cost of fixing a

design flaw increases considerably as the software development lifecycle proceeds. Many projects

exceed time or budget constraints (or both) as a result of fixing or re-engineering design issues that

ought to have been addressed before coding had begun.
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Figure 5.1: A set of 6 simple requirements for a microwave oven and the corresponding DBTs. Courtesy of
Geoff Dromey [35].

DBTs are created by a two stage process. The first is to translate each functional requirement

into a simple, straightforward, path of requirements. Figure 5.1 shows a set of six simple require-

ments for a microwave oven and the corresponding DBTs. Each node may represent a component,

state or event. The second stage is theintegration(or composition) of the individual requirement

DBTs into a single overall DBT. Integration is achieved by merging the trees at common nodes, as

shown in Figure 5.2. Figure 5.3 shows the overall DBT for the microwave oven system.
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Figure 5.2: The result of integrating R3C and R6 from Figure 5.1. Courtesy of Geoff Dromey [35].

At first, DBTs were constructed and drawn by hand. However, as the size of the software

systems studied using DBTs has increased, this became a limitation in their use. Some of the

largest systems include up to 500 requirements and over 1000 unique nodes in the DBT. Individually

placing each of these nodes is tedious and time-consuming, more importantly, displaying such large

trees is difficult on computer displays, causing researchers to resort to large-format paper displays

[35]. For these reasons, an interactive Focus + Context system, such as Structural Zooming, may

be a useful technique for the interactive visualisation of these large trees on computer displays.

5.2 Experimental design

DBTs are naturally represented as node-link or inclusion style trees with Structural Zooming. For

simplicity, much of the “visual syntax” present in Figures 5.1, 5.2 and 5.3 (such as double-boxes and

colour) are omitted, and all types of nodes are considered equally. The data is obtained from DBT

researchers at Griffith University, and converted into machine-readable trees using a semi-automatic

conversion process.

The corpus of files used in this investigation, is the same as used in Section 2.3, including the

non-DBT ontology files. Table 5.1 lists the sizes of these files, and Figure 5.4 shows the Enterprise-

Ontology file in node-link and inclusion layout styles.
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Figure 5.3: The complete integration of all the requirements for the microwave oven system. Courtesy of
Geoff Dromey [35].
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(a) Node-link Layout Style

Figure 5.4: The Enterprise-Ontology class hierarchy.
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(b) Inclusion Layout Style (Minimum Enclosing Square)

Figure 5.4: The Enterprise-Ontology class hierarchy.

Navigation paths were sourced from both logfiles and navigation strategies. For each data file,

two logfiles were obtained from software quality researchers at Griffith University who were fa-

miliar with the structure of DBTs [35]. The “target node — perfect” and “target node — normal”

navigation strategies were used. For each, two sets of target nodes were created, being random

samples of 25% and 75% of the leaf nodes. The motivation behind these differing sample sizes, is

that the 25% sample size corresponds to a small exploration of the data file, such as a search for a

small number of targets, whereas the 75% sample size corresponds to a larger and more thorough

exploration of the data file. This gives six options1 of navigation path for each data file, being:

1In fact, not every data file has exactly six navigation paths, as some files have one or three logfiles.
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Tree Number of
Nodes

Integrated Low Level DBT 504
Multi-Sensory Taxonomy 290
Satellite Low Level DBT 269
Enterprise Ontology 95
Integrated High Level DBT 89
Mine Pump DBT 78
Online Shopping Low Lvl DBT 43
Online Shopping Med Lvl DBT 40
12207 Acquisition DBT 40
Satellite High Level DBT 33
Car System DBT 22
Online Shopping High Lvl DBT 21
Man Fishing DBT 17

Table 5.1: Sizes of the input trees shown in decreasing order.

1. Logfile 1

2. Logfile 2

3. Target node — perfect, 25% sample size

4. Target node — perfect, 75% sample size

5. Target node — normal, 25% sample size

6. Target node — normal, 75% sample size

Four inclusion tree layout algorithms are used.

• The greedy h-v inclusion layout algorithm, presented in Section 2.2.1.

• The optimal h-v inclusion layout algorithm, presented in Section 2.2.1.

• The jewellery box inclusion layout algorithm, presented in Section 2.2.2.

• The stable jewellery box inclusion layout algorithm, presented in Section 4.2.1.

For the h-v inclusion layout algorithms, the three possible h-v node rotation strategies are consid-

ered, as described in Section 4.1.2.

• Linear rotation.
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• Circular rotation.

• Orthogonal rotation.

Additionally, the node-link tip-over layout style is considered for the two h-v layout algorithms

(greedy and optimal). In this case, only orthogonal node rotation is considered. In total, this gives

10 possible combinations of layout style and algorithm:

Style Algorithm Rotation

1 Inclusion Greedy h-v Circular

2 Inclusion Greedy h-v Linear

3 Inclusion Greedy h-v Orthogonal

4 Inclusion Optimal h-v Circular

5 Inclusion Optimal h-v Linear

6 Inclusion Optimal h-v Orthogonal

7 Node-link Greedy h-v Orthogonal

8 Node-link Optimal h-v Orthogonal

9 Inclusion Jewellery Box

10 Inclusion Stable Jewellery Box

Three possible choices are considered for the detail-reducing threshold, as described in Sections 3.3

and 4.1.1.

• N(12) — At most 12 on-screen nodes.

• N(24) — At most 24 on-screen nodes.

• N(36) — At most 36 on-screen nodes.

The logfile navigation paths use onlyN(12), because this is the detail-reducing threshold that was

used when the logfiles were obtained. In general, it is not possible to use a different detail-reducing

threshold with a logfile, as doing so would cause the set of on-screen collapsed nodes to be different

to that available to the user creating the logfile.

This is an investigation using trees, so the following set of measures, described in Section 4.4, is

used.

• MMM — Minimise Motion
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• MMMG — Minimise Motion Groups

• MMLS — Minimise Layout Size

• MMTO — Minimise Transient Occlusions

• MOO — Orthogonal Ordering

The Preservation of Bends (MPOB) and Preservation of Topology (MPOT) measures are not used,

since they only refer to orthogonal edge layouts which are only present in clustered graphs, not

trees.

5.3 Results

The results are presented according to each of the individual parameters that were varied, aggregated

over the corpus of data files and navigations. Full results are available on the CD accompanying

this thesis, as described in Appendix A. A discussion of the results is presented in Chapter 8.

Results are presented in two forms: a set of “full” plots of the sorted values of each measure,

and a set of three “summary” plots showing the maximum value, sum and average value, for each

measure. The full plots show the value of the measure for each user operation, be it recorded in a

logfile or generated by a navigation strategy. These user operations have been sorted according to

the measure value, and the values joined in a line plot (that is, thex axis does not correspond to

time, or to the order in which the operations were performed). The values in the summary plots

are independently normalised for each measure. In general, the summary plots bring out the salient

aspects of the parameter being presented, without overly simplifying the data. The nature of the

investigation, particularly as shown by the sorted value plots, suggests that histograms would be a

superior way to summarise and present the results: Section 6.3 shows that this is not the case.

Some comparisons do not contain the same number of operations. This is due to differences

in the parameters causing differences in the number of operations; for example, a random sample

size of 25% has less target nodes than a random sample size of 75%, and therefore also has less

operations. In these cases, the maximum value and average value summary plots are more useful

than the remaining plots.
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5.3.1 Layout algorithm — Inclusion style

Figures 5.5 to 5.9 show the sorted results for each quality measure against the choice of layout

algorithm in the inclusion style. Figures 5.10 to 5.12 show the maximum value, sum and average

value summaries of the results.
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Figure 5.5: Inclusion layout algorithm comparison
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Figure 5.7: Inclusion layout algorithm comparison
for sorted values of the Minimise Layout Size mea-
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Figure 5.10: Inclusion layout algorithm comparison by using the normalised maximum of each measure.
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Figure 5.11: Inclusion layout algorithm comparison by using the normalised sum of each measure.
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Figure 5.12: Inclusion layout algorithm comparison by using the normalised average of each measure.
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5.3.2 Layout algorithm — Node-link style

Figures 5.13 to 5.17 show the sorted results for each quality measure against the choice of layout

algorithm in the node-link style. Figures 5.18 to 5.20 show the maximum value, sum and average

value summaries of the results.
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Figure 5.13: Node-link layout algorithm compari-
son for sorted values of the Minimise Motion mea-
sureMMM.
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Figure 5.14: Node-link layout algorithm com-
parison for sorted values of the Minimise Motion
Groups measureMMMG.
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Figure 5.15: Node-link layout algorithm compar-
ison for sorted values of the Minimise Layout Size
measureMMLS.
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Figure 5.16: Node-link layout algorithm compari-
son for sorted values of the Minimise Transient Oc-
clusions measureMMTO.
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Figure 5.18: Node-link layout algorithm comparison by using the normalised maximum of each measure.
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Figure 5.19: Node-link layout algorithm comparison by using the normalised sum of each measure.
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Figure 5.20: Node-link layout algorithm comparison by using the normalised average of each measure.
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5.3.3 Maximum detail threshold

Figures 5.21 to 5.25 show the sorted results for each quality measure against the choice of maximum

detail threshold. Figures 5.26 to 5.28 show the maximum value, sum and average value summaries

of the results.
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Figure 5.21: Maximum detail threshold compari-
son for sorted values of the Minimise Motion mea-
sureMMM.
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Figure 5.22: Maximum detail threshold compar-
ison for sorted values of the Minimise Motion
Groups measureMMMG.
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Figure 5.23: Maximum detail threshold compari-
son for sorted values of the Minimise Layout Size
measureMMLS.
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Figure 5.24: Maximum detail threshold compari-
son for sorted values of the Minimise Transient Oc-
clusions measureMMTO.
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Figure 5.25: Maximum detail threshold compar-
ison for sorted values of the Orthogonal Ordering
measureMOO.
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Figure 5.26: Maximum detail threshold comparison by using the normalised maximum of each measure.

 0

 0.2

 0.4

 0.6

 0.8

 1

MOOMMTOMMMGMMMMMLS

S
um

 (n
or

m
al

is
ed

 p
er

-m
ea

su
re

)

Measure

N(12)
N(24)
N(36)

Figure 5.27: Maximum detail threshold comparison by using the normalised sum of each measure.
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Figure 5.28: Maximum detail threshold comparison by using the normalised average of each measure.
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5.3.4 Navigation paths — Target node

Figures 5.29 to 5.33 show the sorted results for each quality measure against the choice between

“target node — perfect” and “target node — normal” navigation strategies. Figures 5.34 to 5.36

show the maximum value, sum and average value summaries of the results.
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Figure 5.29: Target node navigation strategies
comparison for sorted values of the Minimise Mo-
tion measureMMM.
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Figure 5.30: Target node navigation strategies
comparison for sorted values of the Minimise Mo-
tion Groups measureMMMG.
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Figure 5.31: Target node navigation strategies
comparison for sorted values of the Minimise Lay-
out Size measureMMLS.
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Figure 5.32: Target node navigation strategies
comparison for sorted values of the Minimise Tran-
sient Occlusions measureMMTO.
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Figure 5.33: Target node navigation strategies
comparison for sorted values of the Orthogonal Or-
dering measureMOO.
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Figure 5.34: Target node navigation strategies comparison by using the normalised maximum of each mea-
sure.
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Figure 5.35: Target node navigation strategies comparison by using the normalised sum of each measure.
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Figure 5.36: Target node navigation strategies comparison by using the normalised average of each measure.
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5.3.5 Navigation paths — Sample size

Figures 5.37 to 5.41 show the sorted results for each quality measure against the choice between a

random sample size of 25% and 75% for the “target node” navigation strategies. Figures 5.42 to

5.44 show the maximum value, sum and average value summaries of the results.
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Figure 5.37: Sample size comparison for sorted
values of the Minimise Motion measureMMM.
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Figure 5.38: Sample size comparison for sorted
values of the Minimise Motion Groups measure
MMMG.
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Figure 5.39: Sample size comparison for sorted
values of the Minimise Layout Size measure
MMLS.
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Figure 5.40: Sample size comparison for sorted
values of the Minimise Transient Occlusions mea-
sureMMTO.
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Figure 5.41: Sample size comparison for sorted
values of the Orthogonal Ordering measureMOO.
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Figure 5.42: Sample size comparison by using the normalised maximum of each measure.
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Figure 5.43: Sample size comparison by using the normalised sum of each measure.
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Figure 5.44: Sample size comparison by using the normalised average of each measure.
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5.3.6 Node rotation strategy

Figures 5.45 to 5.49 show the sorted results for each quality measure against the three options

of node rotation strategy. Figures 5.50 to 5.52 show the maximum value, sum and average value

summaries of the results. The results show that for theMMM andMMMG measures, orthogonal

rotation is the poorest, followed by circular and linear rotation. The results for theMMLS andMOO

measures show no difference, and the results for theMMTO measure shows that linear rotation is

far worse than circular and orthogonal rotation.
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Figure 5.45: Node rotation strategy comparison
for sorted values of the Minimise Motion measure
MMM.
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Figure 5.46: Node rotation strategy comparison
for sorted values of the Minimise Motion Groups
measureMMMG.
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Figure 5.47: Node rotation strategy comparison
for sorted values of the Minimise Layout Size mea-
sureMMLS.
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Figure 5.48: Node rotation strategy comparison
for sorted values of the Minimise Transient Occlu-
sions measureMMTO.
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Figure 5.49: Node rotation strategy comparison
for sorted values of the Orthogonal Ordering mea-
sureMOO.
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Figure 5.50: Node rotation strategy comparison by using the normalised maximum of each measure.
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Figure 5.51: Node rotation strategy comparison by using the normalised sum of each measure.
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Figure 5.52: Node rotation strategy comparison by using the normalised average of each measure.
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C H A P T E R 6

Software Views

The second empirical case study of Structural Zooming is that ofsoftware views. Section 6.1

introduces and describes software views as they are used in this investigation. Section 6.2 describes

the data source for the investigation, how the data is represented within the Structural Zooming

system, and sets out the experimental design of the empirical investigation. Finally, Section 6.3

presents the results. The conclusions derived from this investigation are analysed and interpreted in

Chapter 8, along with those presented in Chapters 5 and 7.

6.1 Background

Chapter 5 presents Design Behaviour Trees: a type of tree from the field of software engineer-

ing that represents the behavioural requirements for a proposed piece of software. By contrast,

software viewsprovide visualisations of pre-existing software systems. The motivation for these

visualisations is to aid the software developer to become familiarised with the software quickly.

This is particularly useful for tasks such as reverse-engineering, refactoring, the maintenance and

re-design of legacy systems, and the training of programmers who have recently begun development

on an existing software system.

Software views are created by analysing the structure of the software, followed by the visual

presentation of this structure. The analysis can be either “static” or “dynamic” [155].Static analysis

determines the software structure by examining the source code or compiled object code, and is also

known ascompile-time analysis. Dynamic analysisdetermines the software structure by examining

the actual execution of the software system, and is also known asrun-time analysis. Both methods

have advantages and disadvantages. For example, static analysis requires a parser for each language

desired, whereas dynamic analysis is (generally) language-neutral. However, static analysis is in-

dependant of the hardware architecture, and in fact does not require any such architecture to exist,
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Figure 6.1: The hierarchy of twenty node types used by Swagkit [144].

which is not the case for dynamic analysis. Dynamic analysis is able to give additional information

about the performance of the software, indicating which areas are executed more often than others.

However, ensuring that all parts of the code are executed during the analysis is a difficult problem.

Once the structure of the software has been analysed, it is represented as a graph. The nodes

represent parts of the software system, such as modules, files, classes, functions and variables. An

edge joins two nodes to represent the presence of a relationship between those two parts of the soft-

ware system, such as class inheritance, aggregation of variables, and the caller-callee relationship

between functions. A particularviewof the software is a collection of nodes and edges of certain

types. For example, thecall-graph is a common view which shows the calling relationship among

functions, and is thus useful for identifying coupling and dead code.

This chapter examines the application of Structural Zooming to software views.

6.2 Experimental design

In this investigation, a static view of several pieces of freely available utility software is considered.

The views are created by usingSwagkit[144], a collection of tools for parsing and analysing C/C++

source code [24, 31, 48, 73]. It is similar to the widely usedRigi [102, 103, 150] toolkit for reverse

engineering. Swagkit is a series of patches for the GNU C/C++ compiler (gcc) version 3.0 [147],

that expose the internal data structures of the compiler. Supporting scripts allow a C or C++ software

package to be compiled as usual, with a view of the entire software package as an additional output.

Swagkit defines twenty different types of nodes, arranged hierarchically as shown in Figure 6.1.
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REFERSTO Meaning
FUNCTION FUNCTION Function calls
FUNCTION OBJECT Variable references
OBJECT FUNCTION Function pointers
OBJECT OBJECT Aggregations (struct /union ) and pointers

Table 6.1: Meanings of the different combinations of REFERSTO edges.

However, this investigation makes use of only seven of these node types.

• SUBSYSTEM: A large section of the software, such as that identified by a library file

or executable binary.

• MODULE: A collection of code which forms a cohesive unit within the software

package.

• FILE: A single file of code in the software package.

• OBJECT: A section of memory allocated to an identifier, such as a variable, array,

struct or object.

• FUNCTION: A callable function or subroutine.

• ENUMERATOR: An element in an enumerated type.

• L ITERAL: The actual value of an element in an enumerated type.

There are three types of edges.

• CONTAINS: Indicates that the target node is contained within the source node. For

example, FUNCTIONs are contained in FILEs, which are contained in MODULEs.

Figure 6.2 shows how the types of nodes may be contained within one another.

• REFERSTO: Indicates that the source node refers in some way to the target node. The

source and target nodes may be either FUNCTION or OBJECTnodes. Table 6.1 shows

the meanings of each of these combinations.

• L INKS: Indicates a link between an identifier declared asextern and the location of

its actual declaration (that is, the location the identifier will reference after the linking

stage of compilation).
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Figure 6.2: The allowed CONTAINS edge types in Swagkit.

The CONTAINS edge is ideally suited for use as the cluster hierarchy in a clustered graph. The

REFERSTO and LINKS edges comprise the remainder of the edges in the clustered graph.

Parameters

This investigation uses a corpus of eleven open-source software packages, primarily from the GNU

free software project [51]. Each software package was processed using Swagkit to obtain the corpus

of data files.

• bash-2.05b-libglob : The GNUBourne Again SHell, or bash, version 2.05b

[52], is a re-implementation of the original UNIX Bourne shell with additional fea-

tures. It is the standard shell for the GNU project and is the most commonly used

shell in Linux distributions. It is well structured into numerous self-contained li-

braries. This is the “glob” library, which resolves filename wildcards.

• bash-2.05b-libhistory : As above, except that this is the “history” bash li-

brary, which maintains a log of user commands and allows previous commands to be

recalled, edited and re-executed.
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• bash-2.05b-libmalloc : As above, except that this is the “malloc” bash library,

which performs memory management functions for bash.

• bash-2.05b-libsh : As above, except that this is the “sh” bash library, which

implements numerous simple and commonly required functions for shell-style oper-

ation, such as string processing and interfacing with the operating system.

• bash-2.05b-libtilde : As above, except that this is the “tilde” bash library,

which provides functions for resolving filesystem directories using the tilde notation

for naming home directories.

• bc-1.06-dc : The GNUbc package, version 1.06 [106], is an arbitrary precision

numeric processing language. Thedc program [117] is a reverse-polish notation cal-

culator that shares much of the bc codebase for its computations.

• grep-2.5 : The GNUgreppackage, version 2.5 [53], is the GNU project’s imple-

mentation of the standard UNIX grep utility for efficiently searching text files with

regular expressions.

• hello-1.3 : The GNUhello package [50], version 1.3, is an example of how a

canonical software package in the GNU project ought to appear. Depite its “hello

world” namesake, it actually shows a diverse range of programming language fea-

tures, in an effort to show programming style by example.

• hello-2.1.1 : As above, except that this is version 2.1.1 of thehello package,

which has been updated to reflect language and tool changes since version 1. It dates

from 2002, compared to version 1.3 which dates from 1993, 9 years earlier.

• c488 : The C488 compiler [145] is one of two example software packages offered

with Swagkit. It implements a compiler for a simple language similar to Pascal,

and has been used for an introductory course in compilers and interpreters at the

University of Toronto.

• small : This is the second example software package offered with Swagkit. It is an

extremely small and trivial piece of software, intended only as a simple example of

how Swagkit operates.
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Figure 6.3 shows an example screenshot of thec488 data file using the Stable Jewellery Box

inclusion layout algorithm with “soft” edge routing, defined below. Table 6.2 lists some properties

of the corpus files.

One navigation strategy is used for each of the files in the corpus. This is the “Target node -

perfect” navigation strategy. For each file, the set of leaf node parents is constructed. A random

sample of these nodes are selected as the target nodes to be used by the navigation strategy. The

navigation strategy runs until the target node is expanded, at which point it advances to the next

target node. The state of the Structural Zooming system is not reset between target nodes. The

size of the random sample is either 25% of the set of leaf node parents or 20, whichever is smaller.

(This is to obtain a reasonably sized sample, while avoiding unnecessarily long runtimes.) Each

file uses the same random number generator seed value, to ensure that random choices made by the

navigation strategy are consistent for each run of that data file.

Three inclusion tree layout algorithms are used.

• The optimal h-v inclusion layout algorithm, presented in Section 2.2.1, with the or-

thogonal h-v node rotation strategy, presented in Section 4.1.2.

• The jewellery box inclusion layout algorithm, presented in Section 2.2.2.

• The stable jewellery box inclusion layout algorithm, presented in Section 4.2.1.

As described in Section 2.2.3, the Tom Sawyer Visualization Software edge routing algorithm

has parameters for controlling the edge routing algorithm. Two choices are considered for the

parameters controlling node positions and sizes.

• Hard edge routingis orthogonal edge routing where the node positions and sizes are

fixed after being determined by the inclusion tree layout algorithm.

• Soft edge routingis orthogonal edge routing where node positions may be changed

and node sizes may be increased.

Three possible choices are considered for the detail-reducing threshold, as described in Sec-

tions 3.3 and 4.1.1.

• N(24) — At most 24 on-screen nodes.

• NE(4) — At most 4 expanded on-screen nodes.
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Figure 6.3: An example of thec488 data file using the Stable Jewellery Box inclusion layout algorithm
with soft edge routing.

Number of
nodes graph cluster leaf target lines

File edges edges parents nodes of codea

bash-2.05b-libglob 670 147 669 50 13 3349
bash-2.05b-libhistory 1025 243 1024 38 10 4955
bash-2.05b-libmalloc 627 90 626 83 21 2503
bash-2.05b-libsh 1680 280 1679 229 20 8915
bash-2.05b-libtilde 415 40 414 11 3 1284
bc-1.06-dc 450 340 449 38 10 4305
grep-2.5 1072 840 1071 136 20 24054
hello-1.3 251 25 250 13 3 1272
hello-2.1.1 370 37 369 18 5 7603
c488 235 424 234 27 7 3745
small 7 2 6 3 1 8

Table 6.2: Properties of the corpus files used in this investigation.

aOnly lines containing at least three non-whitespace characters are counted.
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• NE(8) — At most 8 expanded on-screen nodes.

As this is an investigation using clustered graphs, the same set of measures as in Chapter 5 are

used, with the addition of the edge-based clustered graph measures.

• MMM — Minimise Motion

• MMMG — Minimise Motion Groups

• MMLS — Minimise Layout Size

• MMTO — Minimise Transient Occlusions

• MOO — Orthogonal Ordering

• MPOB — Preservation of Bends

• MPOT — Preservation of Topology

6.3 Results

The results are presented according to each of the individual parameters that were varied, aggregated

over the corpus of data files and navigations. Full results are available on the CD accompanying

this thesis, as described in Appendix A. A discussion of these results is presented in Chapter 8.

6.3.1 Layout algorithm

Figures 6.4 to 6.10 show the sorted results for each quality measure against the three choices of

inclusion layout algorithm. It is clear to see that for all the measures exceptMMLS andMOO

the Jewellery Box layout algorithm has the worst results, followed by the Stable Jewellery Box

algorithm, followed by the optimal h-v layout. InMMLS the situation is reversed, where the optimal

h-v layout has the worst results, followed by the Stable Jewellery Box algorithm, followed by the

Jewellery Box algorithm, whileMOO is difficult to interpret as no clear trend is discernable.

The corpus-based nature of the investigation naturally suggests using histograms to present the

results, aggregating the results and showing their frequency, as opposed to showing a sorted plot of

the full results. Figure 6.11 presents the histogram for theMMM results from Figure 6.4. It is pos-

sible to see in Figure 6.11(a) that the optimal h-v layout has many more instances with lowMMM

value. However, it is hard to compare the Jewellery Box and Stable Jewellery Box algorithms. The
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Figure 6.4: Layout algorithm comparison for sorted values of the Minimise Motion measureMMM.

large peak of the optimal h-v layout means that a large range must be accommodated on the scale,

making the comparison between smaller values difficult. Figures 6.11(c), 6.11(d) and 6.11(b) show

separate bar histograms for each of the layout algorithms. A logarithmicy-axis is used in an at-

tempt to address the large range required. These plots show similar features to Figure 6.11(a), but

the logarithmic scale causes unwanted distortion (for example, the Stable Jewellery Box appears to

be significantly better than the Jewellery Box forMMM values above 150) and comparison is dif-

ficult as they are on separate plots. Thus, histograms do not present these results better than sorted

line plots.

Figures 6.12 to 6.14 show a good way of summarising the results. Figure 6.12 shows the max-

imum value for each of the layout algorithms, grouped and independantly normalised by measure.

This allows the worst-case performance of the layout algorithms to be directly compared for each

measure. Figure 6.13 is similar, except that it shows the sum of each measure rather than the maxi-

mum value. This shows the overall performance, and corresponds to the area between thex axis and

curve in Figures 6.4 to 6.10. Again, this shows clear relationships between the layout algorithms

for each measure. Figure 6.14 shows the average value of each measure, rather than the sum. In this

case it shows a similar pattern to the sum in Figure 6.13, however, this view is more useful when

the parameters being compared do not have the same number of operations.
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Figure 6.5: Layout algorithm comparison for sorted values of the Minimise Motion Groups measure
MMMG.
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Figure 6.6: Layout algorithm comparison for sorted values of the Minimise Layout Size measureMMLS.
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Figure 6.7: Layout algorithm comparison for sorted values of the Minimise Transient Occlusions measure
MMTO.
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Figure 6.8: Layout algorithm comparison for sorted values of the Orthogonal Ordering measureMOO.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  100  200  300  400  500  600  700  800

M
P

O
B

Sorted operation number

Optimal h-v (orthogonal)
Jewellery Box
Stable Jewellery Box

Figure 6.9: Layout algorithm comparison for sorted values of the Preservation of Bends measureMPOB.
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Figure 6.10: Layout algorithm comparison for sorted values of the Preservations of Topology measure
MPOT.
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Figure 6.11: Layout algorithm comparison using histograms for the Minimise Motion measureMMM.
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Figure 6.12: Layout algorithm comparison by using the normalised maximum of each measure.
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Figure 6.13: Layout algorithm comparison by using the normalised sum of each measure.
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Figure 6.14: Layout algorithm comparison by using the normalised average of each measure.
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Figure 6.15: Hard vs soft edge routing comparison for sorted values of the Minimise Motion measure
MMM.

6.3.2 Hard vs soft edge routing

Figures 6.15 to 6.21 show the sorted results for each quality measure against hard and soft edge

routing. Very little difference between hard and soft edge layout is discernable in these results.

Figures 6.22 to 6.24 show the summary of these results, which confirms that there is little difference

between hard and soft edge routing in any of the measures.
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Figure 6.16: Hard vs soft edge routing comparison for sorted values of the Minimise Motion Groups mea-
sureMMMG.
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Figure 6.17: Hard vs soft edge routing comparison for sorted values of the Minimise Layout Size measure
MMLS.
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Figure 6.18: Hard vs soft edge routing comparison for sorted values of the Minimise Transient Occlusions
measureMMTO.
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Figure 6.19: Hard vs soft edge routing comparison for sorted values of the Orthogonal Ordering measure
MOO.
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Figure 6.20: Hard vs soft edge routing comparison for sorted values of the Preservation of Bends measure
MPOB.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  200  400  600  800  1000  1200  1400

M
P

O
T 

(×
10

3 )

Sorted operation number

Hard edge routing
Soft edge routing

Figure 6.21: Hard vs soft edge routing comparison for sorted values of the Preservation of Topology mea-
sureMPOT.
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Figure 6.22: Hard vs soft edge routing comparison by using the normalised maximum of each measure.
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Figure 6.23: Hard vs soft edge routing comparison by using the normalised sum of each measure.
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Figure 6.24: Hard vs soft edge routing comparison by using the normalised average of each measure.
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Figure 6.25: Maximum detail threshold comparison for sorted values of the Minimise Motion measure
MMM.

6.3.3 Maximum detail threshold

Figures 6.25 to 6.31 show the sorted results for each quality measure against the three choices of

maximum detail threshold. Here, the different maximum detail threshold choices have differing

numbers of operations. This is because after each target node, the state of the Structural Zooming

system may be different for each of the maximum detail threshold choices. This means that some

target nodes are reached in fewer operations. For example, ifNE(8) has more on-screen nodes than

NE(4) when a target node is reached then it is likely that theNE(8) strategy will require fewer

steps to reach the next target node. Thus, these results suggest thatNE(8) has the most number of

on-screen nodes, followed byN(24), followed byNE(4). It also seems that the order of decreasing

measure values isNE(8),N(24) andNE(4), however, the differing numbers of operations make it

difficult to determine this, with any certainty, from the sorted plots.

Figures 6.32 to 6.34 show the summary for these results. In particular, Figures 6.33 and 6.34

confirm that the order of decreasing measure values is indeedNE(8), N(24) andNE(4), and that

NE(8) is generally noticably worse thanN(24) andNE(4) in all measures.
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Figure 6.26: Maximum detail threshold comparison for sorted values of the Minimise Motion Groups mea-
sureMMMG.
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Figure 6.27: Maximum detail threshold comparison for sorted values of the Minimise Layout Size measure
MMLS.
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Figure 6.28: Maximum detail threshold comparison for sorted values of the Minimise Transient Occlusions
measureMMTO.
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Figure 6.29: Maximum detail threshold comparison for sorted values of the Orthogonal Ordering measure
MOO.
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Figure 6.30: Maximum detail threshold comparison for sorted values of the Preservation of Bends measure
MPOB.
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Figure 6.31: Maximum detail threshold comparison for sorted values of the Preservation of Topology mea-
sureMPOT.
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Figure 6.32: Maximum detail threshold comparison by using the normalised maximum of each measure.
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Figure 6.33: Maximum detail threshold comparison by using the normalised sum of each measure.
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Figure 6.34: Maximum detail threshold comparison by using the normalised average of each measure.
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C H A P T E R 7

Citation Networks

The third and final empirical case study of Structural Zooming is that ofcitation networks. Sec-

tion 7.1 introduces and describes citation networks as they are used in this investigation. Section 7.2

describes the data source for the investigation, how the data is represented within the Structural

Zooming system, and sets out the experimental design of the empirical investigation. Finally, Sec-

tion 7.3 presents the results. The conclusions derived from this investigation are analysed and

interpreted in Chapter 8, along with those presented in Chapters 5 and 6.

7.1 Background

Social networksis the study of how groups of humans communicate or interact in various situations.

The emphasis is on the communication itself — its presence or absence, its size and frequency, any

global patterns that can be discerned, and so on. Social networks are typically represented as graphs,

where each node represents anactor, that may be an individual person or group of people, and an

edge between two nodes indicates some form of communication, interaction or relationship between

the actors.

For example, the “Kevin Bacon graph” has nodes that represent actors (and actresses), and an

edge between two nodes if the actors appeared in a film together. The premise behind the graph is

that every actor is on average six edges away from the node representing the actor Kevin Bacon.

This is also known as the “six degrees of separation” result, and is studied in the field ofsmall-world

or scale-freenetworks [9].

Social networks are interesting for several reasons.

Large data source: Humans are social beings and thrive on communication and

interaction with one another. This communication takes all manner of forms,
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between all manner of people throughout the world. This means that there is

always a large amount of social network data available for visualisation.

Rich data source: Social networks are temporal, that is to say, they change over

time. In addition, there can be many different types of nodes and edges in

any given social network. This richness provides many interesting problems

in trying to visualise and understand social networks.

Optimisation in business: The possible communication channels in a team increase

with the square of the number of team members. Social networks can help

businesses to analyse and optimise their organisational structure from a com-

munication standpoint. Social network analysis also allows businesses to

identify particular types of workers, such as domain experts, troubleshoot-

ers, people who prefer to work independently, and so on.

Universal relevance: Finally, the concept of social networks is one that has rele-

vance to ordinary people and their lives.

Citation networksare a particular type of social network. A citation network is a graph where

each node is a scientific or academic publication, and an edge exists betwee two nodes if one con-

tains acitation to the other. Citations are important in scholarly work because they allow scientists

and researchers to extend the work of others, allowing abody of knowledgeto be built. Citation

networks allow the analysis of the growth of fields of study, collaborations between researchers in

different fields, the identification of important and significant publications, and so on.

The data for this investigation is obtained from the Association for Computing Machinery

(ACM) Digital Library [7]. This is a large and mostly complete repository of all ACM publications,

including magazines, transactions, journals and conference proceedings. For most publications, the

full text of individual articles is available only to ACM Digital Library subscribers. However, bibli-

ographic, abstract and referencing details are publicly available, and this is the source of the citation

network data used in this empirical investigation.

7.2 Experimental design

Ordinarily, a citation network is a standard graph. However, many of the documents in the ACM

Digital Library have beenclassifiedby their authors. This classification is in terms of a well-defined
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hierarchy of subject matter, designed by the ACM, known as the ACMComputing Classification

System(CCS) [6]. The CCS is used here as the cluster hierarchy of the clustered graph, placing

documents as leaf nodes within their appropriate primary classification. Only documents with such

a classification have been used. The web page for each document contains a set of “Reference” links

to other documents referenced by it. A document may also optionally have a set of “Citation” links

to other documents that reference it. Graph edges are created using these reference and citation

links, and the direction of the edges is always towards the document being referenced.

Each data file in the corpus is the citation network obtained by selecting an initial document

and including the documents which are at most three links from this (ignoring the direction of

edges). However, the complete CCS hierarchy consists of over 3200 classes, most of which do

not contain any actual document nodes. In order to alleviate this problem, the citation network

is “pruned” by removing any class nodes that have no descendant document nodes. In addition,

since most documents are classified under the leaf nodes of the CCS, it is often the case that non-

leaf cluster nodes have degree of 1. This is handled by “compressing” these non-leaf nodes, as

described in Section 2.3.1. Doing so, causes the text classification labels of the compressed nodes

to be concatenated, so that the user can still see which classifications are involved. Finally, many

of the classification names and document titles can be quite long, creating collapsed and leaf nodes

of extreme aspect ratios. To avoid this problem, the text labels of nodes are truncated to at most

40 characters, in two lines of at most 26 characters. Where possible, the line break occurs between

words, and truncated text is indicated with an ellipsis at the end of the text.

Parameters

Table 7.1 lists the six corpus data files and some of their properties. Figure 7.1 shows an example

screenshot of the586566 data file using the Stable Jewellery Box inclusion layout algorithm with

“soft” edge routing.
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Initial Number of
document doc. cat. total comp. graph leaf target
ID cite nodes nodes nodes nodes edges parents nodes

a 820113 [143] 16 18 34 15 21 14 4
b 551884 [32] 59 48 107 21 97 36 9
c 774855 [62] 66 60 126 21 110 46 12
d 586566 [91] 131 107 238 40 204 80 20
e 289380 [112] 135 73 208 34 224 59 15
f 564041 [115] 209 123 332 38 386 107 15

Table 7.1: Properties of the corpus files used in this investigation.

Figure 7.1: An example of the586566 data file using the Stable Jewellery Box inclusion layout algorithm
with soft edge routing.

http://portal.acm.org/citation.cfm?id=820113
http://portal.acm.org/citation.cfm?id=551884
http://portal.acm.org/citation.cfm?id=774855
http://portal.acm.org/citation.cfm?id=586566
http://portal.acm.org/citation.cfm?id=289380
http://portal.acm.org/citation.cfm?id=564041
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The parameters used in this case study are similar to those in the study of software views,

described in Section 6.2. Specifically,

• The “Target node – perfect” navigation strategy is used.

• A random sample of 25% of the parents of the leaf nodes is used as the target nodes

(limited to at most 15 nodes, due to the increased connectivity of the clustered graphs

in this corpus).

• Three inclusion layout algorithms are used, being the optimal h-v inclusion layout,

the jewellery box inclusion layout algorithm, and the stable jewellery box inclusion

layout algorithm.

• “Hard” and “soft” edge routing.

• Three options for the detail-reducing threshold, beingN(24) (at most 24 on-screen

nodes),NE(4) (at most four expanded on-screen nodes), andNE(8) (at most eight

expanded on-screen nodes).

The same measures are used, that is,

• MMM — Minimise Motion

• MMMG — Minimise Motion Groups

• MMLS — Minimise Layout Size

• MMTO — Minimise Transient Occlusions

• MOO — Orthogonal Ordering

• MPOB — Preservation of Bends

• MPOT — Preservation of Topology

7.3 Results

As in Section 6.3, the results are presented as a sorted list for each parameter, over the entire

corpus. Full results are available on the CD accompanying this thesis, as described in Appendix A.

A discussion of these results is presented in Chapter 8.
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Figure 7.2: Layout algorithm comparison for sorted values of the Minimise Motion measureMMM.

7.3.1 Layout algorithm

Figures 7.2 to 7.8 show the sorted results for each quality measure against the three choices of

inclusion layout algorithm. Figures 7.9 to 7.11 summarise these results by showing the maximum

value, sum and average value for each measure, as described in Section 6.3.

With the exception of theMMLS measure, the worst case of SJBILA is considerably better than

the JBILA and the optimal h-v layout. The sum and average values show that the JBILA is worse

than the SJBILA and the optimal h-v layout, and the SJBILA is slightly better than the h-v layout.

For the Minimise Layout Size measureMMLS, the results show that the JBILA gives the smallest

layout, followed by the SJBILA and the optimal h-v layout.
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Figure 7.3: Layout algorithm comparison for sorted values of the Minimise Motion Groups measure
MMMG.
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Figure 7.4: Layout algorithm comparison for sorted values of the Minimise Layout Size measureMMLS.
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Figure 7.5: Layout algorithm comparison for sorted values of the Minimise Transient Occlusions measure
MMTO.
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Figure 7.6: Layout algorithm comparison for sorted values of the Orthogonal Ordering measureMOO.
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Figure 7.7: Layout algorithm comparison for sorted values of the Preservation of Bends measureMPOB.
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Figure 7.8: Layout algorithm comparison for sorted values of the Preservations of Topology measure
MPOT.
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Figure 7.9: Layout algorithm comparison by using the normalised maximum of each measure.
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Figure 7.10: Layout algorithm comparison by using the normalised sum of each measure.
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Figure 7.11: Layout algorithm comparison by using the normalised average of each measure.
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Figure 7.12: Hard vs soft edge routing comparison for sorted values of the Minimise Motion measure
MMM.

7.3.2 Hard vs soft edge routing

Figures 7.12 to 7.18 show the sorted results for each quality measure against hard and soft edge

routing, and Figures 7.19 to 7.21 show the summary of these results. As in Section 6.3, the differ-

ence between hard and soft edge routing is very small. However, it is noticable that in the worst

case (that is, the maximum value), hard edge routing is better for theMOO andMPOB measures,

and soft edge routing is slightly better for theMMTO andMPOT measures.
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Figure 7.13: Hard vs soft edge routing comparison for sorted values of the Minimise Motion Groups mea-
sureMMMG.
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Figure 7.14: Hard vs soft edge routing comparison for sorted values of the Minimise Layout Size measure
MMLS.
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Figure 7.15: Hard vs soft edge routing comparison for sorted values of the Minimise Transient Occlusions
measureMMTO.
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Figure 7.16: Hard vs soft edge routing comparison for sorted values of the Orthogonal Ordering measure
MOO.
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Figure 7.17: Hard vs soft edge routing comparison for sorted values of the Preservation of Bends measure
MPOB.
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Figure 7.18: Hard vs soft edge routing comparison for sorted values of the Preservation of Topology mea-
sureMPOT.
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Figure 7.19: Hard vs soft edge routing comparison by using the normalised maximum of each measure.
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Figure 7.20: Hard vs soft edge routing comparison by using the normalised sum of each measure.
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Figure 7.21: Hard vs soft edge routing comparison by using the normalised average of each measure.
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Figure 7.22: Maximum detail threshold comparison for sorted values of the Minimise Motion measure
MMM.

7.3.3 Maximum detail threshold

Figures 7.22 to 7.28 show the sorted results for each quality measure against the three choices

of maximum detail threshold, and Figures 7.29 to 7.31 show the summary of these results. It is

clear from these results that the worst case ofNE(8) is generally worse thanN(24) andNE(4),

particularly forMMTO, MOO andMPOB. The sums of the measures do not vary as much, but

NE(8) is still the worst, or very close to it. The average values of the measures clearly indicate that

NE(8) is noticably worse thanN(24) andNE(4), which themselves have much closer averages.
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Figure 7.23: Maximum detail threshold comparison for sorted values of the Minimise Motion Groups mea-
sureMMMG.
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Figure 7.24: Maximum detail threshold comparison for sorted values of the Minimise Layout Size measure
MMLS.
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Figure 7.25: Maximum detail threshold comparison for sorted values of the Minimise Transient Occlusions
measureMMTO.
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Figure 7.26: Maximum detail threshold comparison for sorted values of the Orthogonal Ordering measure
MOO.
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Figure 7.27: Maximum detail threshold comparison for sorted values of the Preservation of Bends measure
MPOB.
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Figure 7.28: Maximum detail threshold comparison for sorted values of the Preservation of Topology mea-
sureMPOT.
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Figure 7.29: Maximum detail threshold comparison by using the normalised maximum of each measure.
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Figure 7.30: Maximum detail threshold comparison by using the normalised sum of each measure.
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Figure 7.31: Maximum detail threshold comparison by using the normalised average of each measure.
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Figure 8.1: Summary of layout algorithm results, from Figures 5.10, 5.12, 6.12, 6.14, 7.9, 7.11, 5.18 and
5.20.
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Discussion

This chapter discusses the results of the three empirical investigations presented in Chapters 5, 6

and 7.

8.1 Layout algorithm

Layout algorithm results are presented for both inclusion and node-link layout styles in Sections 5.3.1,

5.3.2, 6.3.1 and 7.3.1. Figure 8.1 shows a summary of the results from these sections.

Observe that for layout size (MMLS), the h-v based algorithms perform poorly for cluster hi-

erarchies with large degrees (Sections 6.3.1 and 7.3.1), but perform comparatively well for smaller

degrees (Section 5.3.1). The greedy h-v layout performs slightly worse than the optimal h-v layout

(Section 5.3.2), which confirms its expected performance. In addition, the comparison between in-

clusion and node-link h-v layout algorithms confirms that there is no substantial difference between

layout in the inclusion and node-link styles. By contrast, the JBILA produces the most compact

layouts, performing at least as well as the h-v layout algorithms. This confirms our intuition, as

the JBILA is designed to minimise the size of the layout without regard for any other factors. The

performance of the SJBILA is between the JBILA and h-v based layout algorithms.

However, the JBILA performs very poorly in all the other measures (MMM,MMMG,MMTO,

MOO,MPOB andMPOT). In these measures, both the SJBILA and h-v based algorithms perform

noticably better than the JBILA. In some cases the SJBILA outperforms h-v layout, and in others

the h-v layout outperforms the SJBILA. This indicates that the SJBILA and h-v layout are both

superior to the JBILA for Structural Zooming. For clustered hierarchies with large degrees, the

SJBILA is superior due to its smaller layout.

Thus, it is concluded that the choice of layout algorithm is important in Structural Zooming,

and has direct bearing on the performance of Structural Zooming. The difference between good
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Figure 8.2: Summary of maximum detail threshold results, from Figures 5.26, 5.28, 6.32, 6.34, 7.29 and
7.31.
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and bad quality layouts can be very large, not only in the traditional static layout measure of the

layout size but also in the other dynamic measures. The results validate the SJBILA as a useful

layout algorithm, particularly for Structural Zooming. This is because it is able to combine good

layout size with good dynamic animation properties.

8.2 Maximum detail threshold

Results for the maximum detail threshold are presented in Sections 5.3.3, 6.3.3 and 7.3.3. Figure 8.2

shows a summary of the results from these sections.

These results confirm our intuition that the choice of maximum detail threshold influences the

measures: more data content results in measures that are generally worse. For theMMM,MMMG,

MMLS andMMTO measures, the DBT results (Section 5.3.3) seem to indicate that this relationship

may be approximately linear. However, the rest of the results indicate that the relationship increases

dramatically if the data content is allowed to rise too far. In particular, the results in Sections 6.3.3

and 7.3.3 indicate that theNE(8) maximum detail threshold is too high, causing measure values

that are noticably higher thanN(24) andNE(4).

This suggests that there is a “window” of suitable or appropriate maximum detail threshold

choices for a given set of data, and once this limit is exceeded the visualisation quality decreases

rapidly. This supports the concept of constant visual complexity presented in Section 3.1, that is,

that maintaining an optimal amount of on-screen information is beneficial for the user (in terms

of the measures used here). In addition, since the measures are geometry-based but the maximum

detail threshold is data-based, these results justify the monotone visual complexity assumption and

support limiting the visual complexity by limiting the underlying data content. This is useful as

it allows constant visual complexity visualisation methods to be simplified, as they need not be

concerned with the exact visual content and may instead concentrate on the data content. However,

the problem of determining anappropriatewindow of visual complexity or data content has not

been addressed. This is a necessary step in ensuring the practical effectiveness of constant visual

complexity in Structural Zooming techniques, and remains an important open problem.
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Figure 8.3: Summary of results of target node navigation strategies, from Figures 5.34 and 5.36.
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Figure 8.4: Summary of results of navigation strategy sample sizes, from Figures 5.42 and 5.44.
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8.3 Navigation paths

Results for the comparison of target node navigation strategies is presented in Section 5.3.4. Fig-

ure 8.3 shows a summary of the results from this section.

These results show very little difference between the Perfect and Normal navigation strategies

in both maximum values and average values. This is despite more operations being performed by

the Normal navigation strategy, as shown by Figures 5.29 to 5.33.

This means that the mistake model used by the Normal navigation strategy does not cause large

changes in the measures, and suggests that the two strategies are mostly equivalent. This justifies

the choice to use only the Perfect navigation strategy in the subsequent empirical investigations in

Chapters 6 and 7. It is concluded that the Perfect navigation strategy is useful as a deterministic

benchmark navigation strategy, making the randomised approach of the Normal navigation strategy

unnecessary.

One unexpected result is the average value for transient occlusions (MMTO) is lower for the

Normal navigation strategy. The most likely explanation for this is that some of the mistakes made

by the Normal strategy turn out to be beneficial for subsequent target nodes, causing some occlu-

sions to be avoided because some of the nodes are already expanded.

Results for the comparison of sample sizes is presented in Section 5.3.5. Figure 8.4 shows a

summary of the results from this section.

These results also appear quite similar to each other, with the values for sample sizes of 75% be-

ing slightly larger than those for 25%. The difference in average values is small and approximately

the same for all the measures. This suggests that the datasets are reasonably uniformly distributed,

and that the results do not depend on the size of the region explored but rather on the fact that some

random coverage is obtained. This suggests that the choice between 25% and 75% sample sizes is

largely irrelevant in a study such as this, justifying the choice to use only a sample size of 25% (and

smaller, in some cases), in the subsequent empirical investigations in Chapters 6 and 7.

An outlier in these results is the maximum value for transient occlusions (MMTO) is noticably

higher for 75%, whilst the average value follows the same trend as the other measures. This suggests

that there may exist rare occasions with very large occlusions that are more likely to occur with

larger sample sizes. In these cases using 25% is still preferable to 75%, since such pathological

cases are less likely to occur while good coverage is still obtained.
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Figure 8.5: Summary of h-v node rotation results, from Figures 5.50 and 5.52.

8.4 H-V node rotation strategy

Results for the node rotation strategy for both inclusion and node-link layout styles is presented in

Section 5.3.6. Figure 8.5 shows a summary of the results from this section.

These results show that there is no difference between linear, circular and orthogonal rotation

in the layout size (MMLS) and orthogonal ordering (MOO) measures. This is intuitively expected

and easily understood, based on the design of the rotation strategies and how they relate to these

two measures.

However, it is immediately apparent that linear rotation is particularly bad in terms of transient

occlusions (MMTO). Circular rotation is not as good as orthogonal rotation, but is also much better

than linear interpolation. The tradeoff is that orthogonal rotation is somewhat worse in terms of the

motion measures (MMM andMMMG). Interestingly, circular rotation performs better than linear

rotation in the motion measures, where the opposite would be intuitively expected. Nevertheless,

the orthogonal node rotation scheme is considered to be the most appropriate for the Structural

Zooming of h-v layouts, as the benefits of few occlusions outweigh the additional motion it requires.
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Figure 8.6: Summary of results of orthogonal edge routing — hard vs soft, from Figures 6.22, 6.24, 7.19
and 7.21.

8.5 Orthogonal edge routing — hard vs soft

Hard vs soft orthogonal edge routing results are presented in Sections 6.3.2 and 7.3.2. Figure 8.6

shows a summary of the results from these sections.

These results are clear — there is very little difference between the choice of hard and soft

orthogonal edge routing in any of the experimental cases, for each of the measures. There is the

possibility that there is a difference between them in other measures. Most notably, soft edge routing

aims to maintain a minimum spacing between parallel edge segments, a property that is not captured

by any of the empirical measures. However, from the results obtained, it is concluded that in these

measures, there is no substantial difference between either of the edge routing strategies, even for

the edge-based measures (Preservation of BendsMPOB and TopologyMPOT). This means that,

based on its attempt to preserve edge spacing, it is likely that soft edge routing is preferable to hard

edge routing. These results allow the choice of soft edge routing in the knowledge that the empirical

measures will not be substantially worse as a result.
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C H A P T E R 9

Conclusion

This thesis presentsStructural Zooming, adata-drivenFocus + Context technique. This technique

has all the advantages of contemporary geometric distortion based Focus + Context techniques, such

as the Graphical Fisheye View and Hyperbolic Browser, but avoids the problems associated with

these techniques. In particular, Structural Zooming maintains an approximately constant level of

visual complexity, preserves spatial properties by virtue of the lack of any distortion, and leverages

existing techniques. In addition, the benefits of geometric zooming are retained, including a high

detail focus region and low detail context, smooth animation of transitions during user navigation,

and preservation of a high quality and aesthetically pleasing data layout.

Structural Zooming has been presented in a general fashion, where it is applicable to any vi-

sualisation technique, and in the specific case of visualising relational data — namely, trees and

clustered graphs. This latter method has been experimentally evaluated using data from three appli-

cation areas and a series of empirical quality measures, derived from perceptual psychology, good

design principles, and experience and intuition with the system. The findings confirm the usefulness

of Structural Zooming as it is applied to relational data in this study.

9.1 Future research

This section briefly describes several possible directions for future research related to this thesis.

HCI user study: A full HCI user study would be able to investigate the psychophys-

ical parameters of Structural Zooming. The results of such a study may assist

with predicting actual human performance when using Structural Zooming.

Concurrent vs. consecutive animations:The question of how best to animate a

collection of composable animations remains unanswered. This is effectively
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the issue of how to partition the animations into groups of concurrent anima-

tions, and the order in which the groups should be consecutively animated.

It also includes any related human-perception issues. This is mentioned in

Section 3.3.

Efficient removal of non-monotonicities: The algorithm for removing non-mono-

tonicities presented in Section 4.3.4 is fairly simple; however, it potentially

requires repeated linear searches through the edge layout. In addition, it is not

guaranteed to find transitions that are free from ambiguities when edges are

non-monotone in bothx andy. It would be interesting to find an alternative

search strategy for the efficient removal of non-monoticities in edge layouts.

Improved animation strategy for SJBILA layout changes: The Stable Jewellery

Box Inclusion Layout Algorithm (Section 4.2.1) does a good job of preserving

the mental map and avoiding occlusions during transitions between layouts.

However, it still uses linear interpolation, which can almost certainly be im-

proved upon in order to further reduce occlusions during transitions. Such a

system may make use of the existing Delaunay triangulations from the layout

construction, or may incorporate elements of route planning from the field of

robotics.

Arbitrary (non-orthogonal) edge layouts: The generalisation of orthogonal edge

routing and animation (Section 4.3) to arbitrarily placed polylines (or smooth

curves) would be quite challenging.

Structural Zooming of non-relational data: This thesis presents the general tech-

nique of Structural Zooming, as well as its application to relational data of

trees and clustered graphs. Applying Structural Zooming to other types of

information visualisation could yield good results and useful systems.

Clustered graph algorithms: The general strategy of treating clustered graphs as

inclusion trees combined with node-link edges can limit the quality of the

overall layout. An improvement would be the use of a clustered graph algo-

rithm that is specifically designed to draw clustered graphs nicely.
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Application to graphs: Structural Zooming may be applied to normal (non-clust-

ered) graphs if a clustering algorithm is used to automatically cluster the

nodes of the graph. Such clustering algorithms may be graph-theoretic or ge-

ometrically based, and may compute the clustering statically (that is, compute

the clustering for the entire dataseta priori) or dynamically (that is, compute

the clustering for the zoomed dataset during the user’s navigation through the

dataset).

Allow modification and interaction with the dataset: The Structural Zooming

system implemented is abrowser, in that it does not support modification of

the overall dataset. The usefulness of Structural Zooming would be increased

if it could be used to edit or interact with the data, instead of merely display-

ing it.
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A P P E N D I X A

Included CD-ROM Description

This thesis is accompanied by a CD-ROM attached to the inside back-cover. It contains an elec-

tronic presentation of this thesis and some supplementary material.

Electronic thesis document: An electronic version of this thesis is contained on

the CD-ROM under the filenamethesis.pdf . It is in Adobe Portable Doc-

ument Format (PDF), and requires a compatible program for viewing, such

as Adobe Acrobat Reader. In addition, if Adobe Acrobat Reader is used, the

animated figures may be interactively viewed. This requires Acrobat Reader

version 5 or above.

Animated figures: Due to technical limitations, the animated figures are not em-

bedded directly within thethesis.pdf file. Rather, each animated figure

is stored as an individual file in theanim directory on the CD-ROM. Each

animated figure is available in two formats,PDFandAVI . The PDF format

figures may be viewed with Adobe Acrobat Reader (and this is what is done

when an animated figure is clicked in the main thesis document). The AVI

format figures may be viewed using any media player that is able to view

movie files in the AVI container format, encoded using the XviD codec. (The

AVI format figures are primarily intended as a backup, in case the PDF fig-

ures do not properly display or animate.) Table A.1 lists the base filename of

each animated figure.



A-2 Included CD-ROM Description

In addition, the accompanyingminepump-tour.wmv file is contained in

theanim directory. It may be viewed using any media player that is able to

view movie files in the WMV container format, encoded using the Windows

Media Video codec, such as Windows Media Player.

Data files: Two types of raw data files are included on the CD-ROM that pertain

to the empirical evaluation presented in Chapters 5, 6 and 7 —input data

files, such as corpus tree and clustered graph files and navigation logfiles, and

output result files, which are the results of the quality measures after running

the experiments. The data files are contained in thedata directory. This di-

rectory is divided intochapter5 , chapter6 andchapter7 directories,

each of which is further sub-divided intoinput andresults directories.

The actual data files are then arranged as necessary in these locations.

Adobe Acrobat Reader: Installation files are included in theacrobat directory

of the CD-ROM for the latest version of Adobe Acrobat Reader for each of

the Windows, Macintosh and Linux operating systems.



Included CD-ROM Description A-3

Animated Page
Figure Num Base filename

2.38 68 2x2extra-proper-measures-3d-anim2
4.8 102 node-expand-inclusion-animation-anim-reverse
4.9 103 node-expand-tipover-animation-anim-reverse
4.12 104 hv-rotate-linear-anim
4.13 105 hv-rotate-circular-anim
4.14 105 hv-rotate-orthogonal-anim
4.15 107 hv-rotate-tipover-anim
4.16 108 expand-node1-anim
4.17 108 expand-node2-anim
4.19(c) 110 jewelrybox-anim-standard-anim
4.21(c) 114 jewelrybox-anim-nodeorder-anim
4.22(c) 115 jewelrybox-anim-stable-anim
4.26 121 c488-example-meta-edge-anim-anim-good
4.27 122 edge-simple-linear1-anim
4.29 123 edge-problem1-anim
4.31 124 edge-problem1-improved-anim
4.34 130 monotone-se-to-ne-anim
4.35 130 monotone-counter-example-2-anim
4.37 132 monotone-counter-example-3-anim
4.39(b) 133 edge-bend-insert-anim
4.39(b) 133 edge-bend-insert-anim-reverse
4.41 134 lcs-insert-front1-anim
4.42(a) 137 lcs-simple2-anim
4.42(b) 137 lcs-simple3-anim
4.43 138 lcs-simple4-anim
4.45 141 lcs-more-insert1-anim
4.47 143 lcs-nontrivial1-anim
4.50(a) 147 oel-simple-nonmon-removed-anim-anim
4.50(b) 147 oel-simple-nonmon3-removed-anim-anim
4.52 150 oel-simple-nonmon-case-1-remove-bad-anim
4.53 151 oel-simple-nonmon-case-1-remove-good-anim
4.55 152 oel-simple-nonmon-case-2-remove-bad-anim
4.56 153 oel-simple-nonmon-case-2-remove-good-anim
4.58 154 spiral1-anim
4.60 156 edge-problem1-good-anim
4.61 157 node-expand-meta-edge-anim

Table A.1: Reference of the filename for each animated figure.
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