A Flexible Network Simulator for

Multiple Server Virtual World Systems

Kevin Pulo

kev@cs.usyd.edu.au

January 8, 2001

Supervisor: Dr Michael E. Houle
Basser Department of Computer Science

The University of Sydney

Submitted in partial fulfillment of the requirements

for the degree of Bachelor of Science (Adv), (Honours)

Contents

I

1

2

3

11

6

Introduction

Introduction

Background

Project Aims

3.1 Problems addressed

3.1.1 Comparing allocation strategies

3.1.2 Developing allocation strategies

3.2 Aims of the project L

Design

Software Requirements

Overview

Basic Definitions and Data Types

6.1 Arena

6.2 Network topology

6.3 Time
6.4 Data

6.5 Identifiers and Keywords

6.6 Collections . .

Costs
7.1 Introduction .
7.2 Cost Internals

7.3 Kinds of Costs

13
13
13
14
15

16

16

17

20
20
22
26
27
28
28

7.4 Template Costs

7.4.1 Template Cost Instances
8 Events
81 General Format

8.2 Entity Creation

8.3 Entity Destruction

8.4 Sending and Receiving Packet Entities
8.5 Template Cost Specification

9 Entities
9.1 Client Entitieso
9.1.1 Client creation events
9.2 Server Entities oo o
9.2.1 Server creation events
9.2.2 Overfull server costs
9.3 Packet Entities Lo
9.3.1 Packet creation events
9.4 Update State Packet Entities
9.4.1 Update State packet creation events
9.4.2 Update State Costs
9.5 Assign Packet Entities o oL
9.5.1 Assign packet creation events
9.5.2 Assignment Costs

10 Logfiles
10.1 Player state logfiles
10.2 Architecture logfiles L.

10.3 Allocation logfiles

33
33
34
35
35
35

36
36
37
37
38
38
38
39
40
40
41
41
42
42

11 Allocation Strategies
11.1 Interface e
11.2 Default Allocation Strategy
11.2.1 Backgroundo oo
11.2.2 Algorithm oL
11.3 Future Allocation Strategies

11.3.1 Combining Allocation Strategies

12 Communication Strategies
12.1 Communication Strategies Implemented
12.2 Interface Lo
12.3 Communication Graph 0oL

12.4 Communication Graph Layout

13 Client Movement Modeling
13.1 Implementationo

13.2 Details of the model used

14 Bots
14.1 Bot Behaviour e

14.2 Implementation o

IIT Results

15 Experimental Design
15.1 Player State Logfiles
15.2 Architecture Logfiles L.

15.3 Simulation Execution oo

16 Results and Discussion

16.1 Total costso

45
46
47
47
48
49
49

50
o1
51
52
52

53
54
95

56
o7
o7

59

59
99
99
60

61

16.2 Overfull clients oo 64

IV Appendices 67
A TImplementation 67
A1 Architecture 67
A1l LEDA . .. 67

A.1.2 Naming Convention 68

A.1.3 Abstractly Named Types 69

Al14 GNU‘tools 69

A15 Include Guards 70

A2 Build Process 72
A21 TheMakefile 72

A2.2 Dependencies 72

A.3 Generating Code and Reducing Code Repetition 72
A.3.1 The C preprocessoro v v v v v v v .. 73

A32 M4 .. 75

Abstract

A wvirtual world is an artificial environment, created inside a computer, which
mimics some aspect of the real world. Virtual worlds are often multiuser, which
means that many people may be present in the virtual world simultaneously
and may interact with each another and the virtual environment. With the
advent of the global Internet connectivity, users from all over the real world
may participate in multiuser virtual worlds and interact without any regard for
geographic boundaries.

However, achieving believable realism is not easy and there are several factors
which can hinder a user’s virtual world experience. In order to avoid these kinds
of problems and provide the best possible experience, the underlying network
must be designed and implemented carefully.

This thesis presents a tool which can guide the design and implementation
of virtual world systems to avoid potential problems. This is achieved by sim-
ulating the system in various scenarios and evaluating the performance of the

system and the potential solutions.

Acknowledgements

I would like to thank my supervisor, Michael Houle for his enthusiasm and
invaluable help throughout this project. It is much appreciated.

Thanks to the Computer Science 2000 Honours year that made hons so
enjoyable. Special thanks to Audrey Lobo for her advice and ongoing support
throughout the year. Finally, many thanks to my mother, father and brother,

whose patience and tireless support have made this year manageable.

Part 1

Introduction

1 Introduction

A virtual world is an artificial environment, created inside a computer, which
mimics some aspect of the real world. They aim to be as realistic as possible,
sometimes even to the point that the user becomes unaware that they are inter-
acting with an artificial environment or cannot tell the difference between the
virtual and real worlds. The realism is frequently achieved through the use of
high resolution 3D graphics displays, but how the virtual world is used is more
important than how it looks. If the user is to become completely immersed in
the virtual world, it must be very intuitive and feel natural to use.

Next to the realism, the most important aspect of virtual worlds is that they
are multiuser. This means that many people may be present in the virtual world
simultaneously. Just as in the real world, they may interact with each other and
with the virtual world, rather than merely interacting with a computer program.
With the advent of the global connectivity provided by the Internet, users from
all over the real world may become participants in a multiuser virtual world and
may interact without any regard for geographic boundaries.

Two of the most popular types of multiuser virtual worlds present on the
Internet are games, such as Quake, and chat rooms, such as IRC. Games will
often provide fast and visually appealing action, such as combat against other
players of the game. Chat rooms provide a means of allowing groups of people
to talk to one another, in a similar fashion to a group of people chatting while
sitting in a circle. They are usually text-based, rather than graphical, and so
are an example of how the use of the virtual world is more important that how
real it looks.

However, several factors can hinder the user’s virtual world experience. The

virtual world may pause for a short duration, disrupting what the user is doing.
Such delays are called lag, and can be extremely frustrating from the user’s
perspective because the it can shatter the illusion being presented by the virtual
world. A similar problem is when groups of users are accidentally removed
from the virtual world, breaking the communication and interactions they are
involved in.

In order to avoid these kinds of problems and provide the best possible
experience for the users of the virtual world, the underlying network must be
designed and implemented carefully. However, doing so is not always straight-
forward. Virtual world systems can be quite complicated, and as the number of
simultaneous users increases, so do the potential problems.

This thesis focuses on a single class of virtual world systems, and presents a
tool which can guide the design and implementation of these systems. For the
problems which may be encountered, it allows potential solutions to be tested,
evaluated and compared. This is achieved by simulating the system in various

scenarios and evaluating the performance of the system.

2 Background

An important concept in networking is the client-server model [4]. In this model,
clients utilise the network to connect to servers, creating a communication chan-
nel called a connection or link. Connected clients and servers communicate by
transmitting small parcels of information called packets or messages. The asym-
metry between clients and servers arises because clients initiate both the con-
nections and communications with the server. The communications in a strict
client-server model consist of clients sending requests, and servers responding
to requests with replies. However, in practice servers often send information to
clients which is unsolicited, but nevertheless useful. The client-server relation-

ship is many-to-one, that is, many clients may be connected to a single server.

The client-server model is commonly found in application-level Internet proto-
cols, such as those used for the World Wide Web, file transfers and the sending
and receiving of email messages.

Virtual world systems are characterised by client-server systems which are
aimed at allowing clients to interact with each other and with a virtual ‘envi-
ronment’. The two main types of virtual world systems are multiplayer Internet
games, such as Quake, and multiuser Internet chat rooms, such as IRC.

In terms of server setup, there are three main types of virtual world systems.

1. Single-server systems consist of one server which all the clients are con-

nected to.

2. Multi-server systems consist of multiple servers collected at a single In-

ternet site.

3. Distributed-server systems consist of multiple servers distributed across

the Internet.

Each of these systems offer advantages and disadvantages in comparison with
the others.

Single-server systems are in general simpler than multi-server and distributed-
server systems, and so are easier to implement.

Since single-server and multi-server systems are at a single location, they
are generally easier to maintain and administer, and are more secure than
distributed-server systems.

The tradeoff to the previous point is that single-server and multi-server sys-
tems suffer from a single point of failure. For example, if the site hosting the
single-server or multi-servers loses power or its Internet link, then the entire
virtual world becomes unavailable. However, it is extremely unlikely that all
the servers in a distributed-server system would be unavailable simultaneously,

which makes it more robust against these types of problems.

10

Multi-server and distributed-server systems have the advantage of redun-
dancy. If a server is lost (due to an operating system crash, for instance), only
the clients connected to that server are affected, while the rest of the virtual
world may continue. It may even be possible to automatically add a spare
replacement server within minutes of the original server loss.

In a single-server system, client interactions travel via the server. However,
in multi-server and distributed-server systems, client interactions must be sent
via more than one server if the clients are on different servers. This additional
communication is said to be interserver, and it adds latency to the interactions.
Latency is the time delay involved in the transmission of a packet, and so lower
latencies are desirable. Since the network links between distributed-servers are
usually Internet links, they are generally of higher latency than in multi-server
systems which may employ expensive high-speed hardware to lower the inter-
server latency.

Distributed-server systems have the advantage that servers may be placed
near the clients to lower the latency of messages between the clients and servers.
However, the latency from clients to the single-server and multi-server site will
on average be higher than well placed distributed servers.

Another advantage of multi-server and distributed-server systems is in the
area of scalability. This is how well a server performs as its workload increases
towards infinity, where the workload is usually related to the number and rate
of clients being served. It is important during times of peak usage and because
the ever-growing size of the Internet means that the number of clients will
generally increase. The client limit of single-server systems is ultimately limited
by the amount of hardware the single server machine can have. Multi-server
and distributed-server systems do not have this limitation, as new servers can
be added to handle extra clients, perhaps even without disrupting the virtual
world. While this does improve the scalability of the system, it is now limited

by the performance of the interserver network. This is because the amount of

11

interserver traffic generally depends upon the number of clients.

As an example, multiplayer action games are usually single-server and lim-
ited to tens of clients, while IRC networks often consist of tens of servers and
tens of thousands of clients. However, IRC has latencies on the order of sec-
onds, while multiplayer action games typically require latencies less than half a
second. In addition, in periods of high usage IRC networks suffer from netsplits,
where the connection between a pair of servers is broken due to the congestion.
These factors justify the choice of virtual world system for multiplayer action
games and IRC chat networks.

In general, each client in a virtual world will not want to interact or commu-
nicate with every other client, particularly in large virtual worlds. The human
user operating a client will usually find it impractical to deal with more than a
small number of other clients at any given time. If these small groups of commu-
nicating clients can be arranged such that most of them are on the same server,
then the performance and scalability of the system can be improved. This idea
of increasing the performance of the system by exploiting the localisation of
clients is the major motivation behind the project.

The neighbourhood of a client ¢ is the subset of the clients which ¢ may
interact with. How strictly this definition is interpreted is not important; for
example it may be weakened slightly to be only the clients ¢ is expected to
interact with. Performance gains occur when the neighbourhood is a strict
subset of the clients, due to the smaller amount of interserver traffic.

In multi-server and distributed-server systems, each client is assigned to
a particular server which manages the communications with that client. The
act of assigning a client to a server is called an assignment. The collection
of assignments for all clients is called an allocation, and refers to the global
pattern of individual client assignments. This is because it refers less to where
an individual client is assigned, and more to how the resources of the servers have

been partitioned among the clients. An allocation is static if client assignments

12

are fixed when clients connect, and are dynamic if client assignments are free
to change while the client is connected. An allocation strategy is an algorithm
for creating allocations; that is, it decides how each client is to be assigned.
A network scenario refers to a particular situation in the network, specifically,
a given setup of servers, clients, neighbourhoods and allocation, and how this

varies over some time period.

3 Project Aims

3.1 Problems addressed

The project deals with multi-server and distributed-server systems and addresses
two major problems related to finding allocation strategies which perform well.

These problems are:

e The method for comparing allocation strategies and deciding which per-

forms ‘better’ is not obvious.

e Developing good algorithms for allocation strategies is in general a difficult

task.

3.1.1 Comparing allocation strategies

One possible method for measuring and comparing the performance of allocation
strategies is an analytic analysis of allocation strategies. This would probably
be in terms of the statistical nature of the input network scenarios. It would
give good theoretical expectations of the strategies, but no real experimental
results.

Another method is to actually implement the allocation strategies, either in
the network itself or in a simulation, and then run both with ‘expected’ network
scenarios. The amount of interserver latency incurred, for example, could be

measured and compared directly. This would require some method of ensuring

13

that the scenarios used for each strategy are sufficiently similar, such that any
differences would not cause discrepancies in the interserver latencies obtained.
Of course, the interserver latency may not always be the best measure of the
performance of a particular allocation strategy. It would be useful to be able
to evaluate and compare allocation strategies based on any metric, not just the
interserver latency.

It is often the case that allocation strategies will perform well in certain
types of scenarios and poorly in others. Thus it would be useful if strategies
could be compared on a large number of ‘typical’ scenarios, perhaps randomly

generated from some ‘main’ scenario.

3.1.2 Developing allocation strategies

Many problems presented by multi-server and distributed-server systems can
be expressed as optimisation problems. These require that some quantity be
optimised in addition to preserving some additional constraints. An example of
a multi-server or distributed-server optimisation problem is to find an allocation
which minimises the amount of interserver latency.

These problems are generally NP-hard, which means that any practical ad-
vances in solving them are made with heuristics. A heuristic is a general guide
or rule for solving a problem, rather than an actual algorithm. Finding high
quality and efficient heuristics is usually difficult because unlike algorithms,
heuristics cannot be proved to be optimal. Instead, the quality of their op-
timisation must be ascertained experimentally by actually implementing and
running the heuristic. This experimental step is also important in improving
heuristics and developing new, better heuristics.

As such, the project should support the experimentation of heuristics for

solving the various multi-server and distributed-server optimisation problems.

14

3.2 Aims of the project

This thesis presents a flexible simulation tool which facilitates the investigation
into, and experimentation of multi-server and distributed-world systems. The
simulation is a discrete-event simulation with a graphical interface. It is of suf-
ficient generality and modularity that a wide range of systems can be modeled
with a small amount of development effort. The modular design makes it ex-
tensible, so that new allocation strategies, neighbourhoods and cost metrics are
easily created and evaluated. It also allows investigation into many different
factors contributing to the performance of multi-server and distributed-server
virtual world systems. These two benefits allow it to be applied to a wide range
of multi-server and distributed-server virtual world systems and problems they
face.

Throughout the thesis, these general features are applied to a realistic ar-
chitecture for a large multi-server Internet game. The concentration is on the

problem of minimising the interserver traffic for this given architecture.

15

Part 11
Design

4 Software Requirements

The simulation tool is a discrete event simulation and as such it supports the
operations present in these types of simulations. The most important of these
operations is to efficiently process sparse events independently of the time peri-
ods between them, and it allows events to schedule new events, possibly causing
a cascade of events.

The tool itself has several fundamental requirements:

1. The tool should allow the user to investigate and experiment with the per-

formance of the simulation in various scenarios. These scenarios include:

e Various arrangements of players and their behaviours.

Various client, server and other hardware configurations.

e Various methods of dynamically allocating clients to servers.

Various methods of informing clients of the events occurring in the

game.

2. The previous point implies that the tool must be able to effectively “score”
the state of the simulation, and the outcome of the entire simulation,
in order to effectively compare the performance of different simulation

scenarios.

3. The tool should allow the use of “real-world” input, such as data recorded
from actual gameplay. This will ensure that the user can be satisfied that

the results are applicable to the actual game.

4. In addition to testing any already existing dynamic allocation strategies,

the tool should support the development of new allocation strategies.

16

To support these fundamental requirements, the design of the simulation has

several specific requirements.

1. The simulation should graphically show the clients and their relationships
with each other, servers, and any other noteworthy game entities. Inter-
activity, though not necessary, would be a useful addition, because it is
more suited to experimentation involving small changes in parts of sce-

narios, rather than on entire scenarios.

2. The simulation should be reasonably fast, preferably running much faster
than realtime. This dictates several architecture choices, notably that a

compiled language should be used.

3. The design must be modular and extensible, allowing components to be
easily inserted and selected. This is required to support the experimenta-
tion of the different components, and the development of new ones. Object

oriented languages support this idea well.

5 Overview

The simulation consists of many different parts, many of them interrelated. This
section is presented as a brief overview of the entire system and subsequent
sections will discuss the simulation in more detail.

Instances of entities exist in the simulation, and correspond directly to actual
things in the real game. Entities are detailed in Section 9. There are three types

of entities.

e Clients represent the machines that are connected to the game network,
on which players are playing the game. The terms ‘client’ and ‘player’
are often used interchangeably, even though they are technically different
— the client is the game program, running on the player’s computer, and

the player is the human using the client to play the game. Clients in the

17

simulation store a ‘player state’, which encapsulates the player’s location

in the game and allows the location to be estimated.

e Servers represent the machines which collectively control the game, to
which clients are connected. Servers maintain the state of the game world,
allowing players to do things in the game and notifying them when things
happen in the game. For example, all interactions between players are
mediated by the servers. This ensures that no rules of the game are broken
and allows the servers to inform other players of the interaction, among

other things.

e Packets, sometimes called messages, represent small, atomic collections of
information transferred between server and client entities. They are the
only method of communication between clients and servers and approxi-

mately correspond to the actual networking packets transferred.

Entities are operated on by instantaneous events in the simulation. There are
also various types of events, each performing different operations. The main
events are to create and destroy entities, and to send and receive packet entities.
Events are detailed in full in Section 8.

Events are “recorded” and stored in plain text logfiles, each of which en-
capsulates some aspect of an entire gaming session. This means that the types
of information stored in them, such as events, entity identifiers, typenames,
player states, costs, etc, each have an unambiguous plain text representation.
Logfiles are detailed in Section 10. There are three different types of logfiles,

characterised by their purpose and the types of events they can store.

e Player state logfiles record the events generated by the players as they play
the game and are a complete record of their actions. These logfiles are
obtained either by storing the events occurring in an actual game being
played by human players, or by simulating such a game with a program

that implements ‘robot’ players, or bots.

18

o Architecture logfiles record the architecture on which a game took place,
for instance, the servers, network configuration, latencies, and so on. They
are useful for testing how different architectures perform with a given

player state logfile.

o Allocation logfiles record the assignment packets, which indicate the allo-
cation of clients to servers throughout the simulation. Since they record
only the assignments, they are a good way of comparing allocation strate-

gies without revealing their details or algorithms.

An allocation strategy encapsulates a method for assigning clients to servers
throughout the course of the simulation. The object-oriented design allows new
strategies to be created and easily tested. Allocation strategies are detailed in
Section 11.

A problem faced by both the actual game and the simulation is how to
inform each client of the activities of the other clients in the game. Clients are
distributed across the Internet and are expected to be connected to the Internet
via dialup modems. This is a bottleneck in the link between the client and
server, and means that clients lack the bandwidth to be told the activities of all
the other clients. The direct implication of this is that each client is notified of
the actions of a subset of the clients. This subset is called the ‘neighbourhood’ of
the client and its member clients are the client’s ‘neighbours’ or ‘neighbourhood
clients’. This subset should be chosen to be clients which are likely to interact
with the client in the near future.

The concept of communication strategies solve this problem in a similar
method to allocation strategies. Each encapsulates a method of choosing client
neighbourhoods, and the design allows easy switching between them. The com-

munication strategies used in the project choose neighbourhoods to be:

e The clients closer than a particular distance away from the given client.

19

e The u nearest neighbours of the given client (for some particular value of

Of these two, the former is expected to be more realistic. Communication
strategies are detailed in Section 12.

Throughout the simulation, various operations and actions incur penalties,
called costs. These costs are stored as a set of coefficients, where any particular
cost is evaluated in terms of these coefficients. This means that it is easy to
represent the cost of assigning a client to a server being proportional to the
number of clients already on the server. This gives costs the flexibility to be

used for almost any action in the simulation. Costs are detailed in SectionT.

6 Basic Definitions and Data Types

This section introduces the basic data types, units, quantities and many of the

terms and definitions which are used throughout the project.

6.1 Arena

The arena is the virtual world in which the game is played, the playing field.
Players move around within the arena at various speeds, and can see their
surroundings, including any other nearby players which are also in that area.

The size of the arena is determined by the game being played, and if this
is not known, then the simulation should attempt to automatically resize the
arena to accommodate all the clients in the game.

In the actual game, the arena is 3-dimensional. In the simulation the arena
is the 2-dimensional projection of the real arena onto the ground. This is ac-
ceptable because most of the game is played near ground level, and using a
3-dimensional arena would complicate much of the simulation and algorithms
to be used, for no real benefit. Points in the arena are 2-dimensional, with real-

valued, Cartesian coordinates. Similarly, distances between points in the arena

20

are also real-valued. The project uses C doubles (32-bit, signed) for coordinates
and distances.

When dealing with real numbers, it is often desirable to use rational numbers
instead. This stores numbers as a combination of numerator and denominator,
in an effort to avoid rounding errors that are common in any limited precision
representation of real numbers. However, they were rejected in favour of simpler,

standard, fixed accuracy floating point real representations for two main reasons.

1. The set of rationals is a strict subset of the set of reals. It is often the case
that positions and distances are irrational, usually due to an operation
such as taking the square root, which is common in Euclidean space.
These numbers cannot be represented as rationals, and therefore must

be approximated, just as real numbers must be.

2. The actual implementation of rational numbers is usually complicated
and brings with it a new set of technical problems, for example, having
extraordinarily lengthy numerators and denominators can cause perfor-

mance problems.

All coordinates and distances in the simulation are measured in the units of the
decimetre (0.1 metres). This gives a virtually unlimited range and resolution
with any floating point data type!.

The arena is displayed graphically by the simulation in an arena window?.
This is a schematic top-down view of the arena, with clients drawn as small
crosses (‘x’). Each server is given its own unique colour, and all the clients are
drawn in the colour of the server they are assigned to. Since the size of the
arena isn’t known a priori, the most extreme z and y values are remembered,

and the display is resized so that its boundary remains 10% outside these values.

!Specifically, a range on the order of 10°%° (that is, minimum and maximum values of
+10%%°), and 15 decimal points of accuracy, that is, resolution of 10715,

*Naturally, this can be disabled for batch simulations, where the simulation is run without
user-intervention to obtain its final outcome.

21

T | 1= Arena]

time = 201000 (paused) time = 201000 (paused)

Current Gost= {20000} {0} . Current Gosk= {20000} {0)
Total Cost = {3898970200} {93990200] E x e TotgkCost = {3898970200} {93990200] 'q
. . o x
% N x % i

N

Figure 1: An example of the arena window, both with and without the neigh-
bourhood edges.

If desired, the neighbourhoods of all clients can be drawn, clearly showing the
overall effect of the selected communication strategy. The top left hand corner
has a small status display, showing the current time and the current and total
costs. Figure 1 shows an example of the arena window, both with and without

the neighbourhood display.

6.2 Network topology

A possible realistic network topology is illustrated in Figure 2, and is the network
topology which this thesis concentrates on. It is three-tiered, consisting of a
standard client-server setup, with intermediary Front End Processors (FEPs)
between the clients and servers. The FEPs reside on the same high-performance
LAN which all the servers are on, which is connected to the Internet where the
clients connect from. This LAN is referred to explicitly as the ‘server LAN’,
and implicitly as ‘the LAN’, as it is the only LAN in the simulation. FEPs
exist to serve as standard single points of connection for the clients. They allow
clients to connect to a single FEP, but still be dynamically assigned to any
server, avoiding the high cost associated that would be occur if clients were to

reconnect themselves dynamically to the different servers.

22

Internet Server LAN

Figure 2: The actual network topology. Clients 1-7 are connected to Servers
A-E via FEPs a—y.

The LAN is expected to be very high performance, for example, switched
Fast Ethernet (100Mbit/s) or Gigabit (1000Mbit/s), whereas clients are ex-
pected to be on (at worst) dialup modem lines (~56kbit/s). We assume that all
of this client bandwidth is available with very little additional latency, as most
realtime multiplayer Internet games do.

Messages sent by clients to their assigned server are said to be ‘upstream’.
Similarly, messages sent by servers to the clients assigned to them are ‘down-
stream’. Most upstream messages are clients informing their servers that their
position in the arena has changed. Most downstream messages are servers no-
tifying their clients of the position changes of other clients. Servers and FEPs
are all implicitly ‘connected’ to one another, as they communicate directly on
the LAN3. Clients, however, can only communicate with each other via their as-

signed servers. Figure 3 illustrates the path taken for messages between clients.

Depending on their available bandwidth, clients will typically send upstream
messages at about 10Hz, and receive downstream messages regarding 10 other

clients at 10Hz as well.

3As a result, the LAN would benefit greatly from being fully switched.

23

Internet Server LAN

Figure 3: The path taken by messages between clients 2 and 6, via their assigned
servers C and D, respectively.

Internet Server LAN

Figure 4: The network topology used by the simulation. Clients 1-7 are con-
nected to Servers A-E with the same relationships as in Figure 2, but the FEPs
a—y have been removed.

24

The project’s network topology differs quite substantially from that de-
scribed above. Effort has been taken at many levels to avoid the disclosure
of which particular server any given client is assigned to, without losing the
information about where and when packets are sent, the network load, and so
on.

The network is two-tiered, with only servers and clients. Servers are con-
nected to each other via the local server LAN. FEPs have been neglected because
for our purposes they are essentially transparent proxies for the clients, and do
not affect the amount of traffic sent over the server LAN or the traffic’s desti-
nation. The cost of traffic between clients and FEPs is neglected, because it is
a completely unavoidable cost. However, the cost of traffic between FEPs and
servers is recorded, because even though it is also unavoidable, it affects the
amount of traffic in the server LAN. Thus, the LAN is directly connected to
the Internet at large, rather than (essentially) firewalled by the FEPs, since this
security aspect doesn’t affect the simulation in any way.

Clients may only send packets to their assigned server. This server is not
known explicitly to the packet, even though its receipt by the server is acknowl-
edged. Servers send packets to any client; if a client is assigned to a different
server, then the packet must first travel to the client’s server, from which point it
travels to the client. As the servers are all on the LAN, these inter-server pack-
ets travel directly between servers without any intermediate servers.* Client to
client interactions make up less than approximately 1% of the total traffic to
and from clients, meaning that they have only an extremely small effect on the
cost of any particular allocation strategy. Thus they have been neglected by the

simulation, although the design allows for them to be added.

4This requires that either each server know which server to send a given client’s packet to,
or some form of broadcasting method is used. The former method is formidable, as it would
(at first glance) require notifying O(n) servers when a client changes assigned servers. How-
ever, the exact problem of deciding which method to use reduces to choosing an appropriate
assignment costs, which will be described in Section 9.5.2.

25

6.3 Time

Points in time are of integer type, to avoid floating-point accuracy problems
(particularly with comparisons, which are important in the simulation’s priority
queue). The start of a simulation is time 0 (the origin against which other
times are measured), and so it is tempting to define time as unsigned. However,
the difference between two points in time has the same units as the points
themselves, thus these durations should also be stored as time variables, and
durations may easily be negative. Also, time-based costs (described in Section
7) may be negative. Hence, times are signed.

Next, the resolution and limits of time must be considered. Both affect the
size of the integers used to store times. The smaller the resolution, and the
larger the limits, the greater the size of integer required. Durations (and time-
based costs, Section 7) are easily accumulated, thus the upper limit of time must
actually be much larger than the expected maximum point in time.

The two competing time resolutions are milliseconds (1ms = 107%s) and
microseconds (1us = 107%s). A time resolution of 1ms is not considered fine
enough, because fast networks routinely deal with sub-millisecond latencies.
Further, if many sub-millisecond times are rounded to 0 or 1ms and then added,
the accumulated error can be quite large’.

The two competing integer sizes are 32-bit, a standard long int type, and
64-bit, not always supported and the GNU gcc extension long long type (see
also Section A.1.4).

Table 1 shows the maximum time values possible for these integer sizes
and time resolutions. As can be seen, 32-bit integers place quite a limit on the
largest possible time or duration value, even at millisecond resolution. However,

programming with 64-bit integers can be slow, non-portable and is generally to

SFor an explicit example, 10000 durations of 10us each add up to 0.1s. If the 10us are
rounded to 1ms, then they add up to 10s. This error is 2 orders of magnitude, since the
rounding from 10us to 1ms is 2 orders of magnitude.

Rounding sub-millisecond times to 0 may occur when taking the difference of two times
which are the same when rounded. In this case, the total is always 0.

26

Time Maximum time value
resolution 32-bit ‘ 64-bit

1000us (1ms) 49 days | 584 000 000 years
100us (0.1ms) 4.9 days | 58 400 000 years
10ps (0.01ms) | 11.9 hours 5 840 000 years
145 (0.001ms) | 1.19 hours 584 000 years

Table 1: Maximum time and duration values for varying integer size and time
resolution.
be avoided if 32-bit integers will suffice.

There are technical issues involved in attempting to record events which
occur at sub-millisecond resolution, however it is better to allow recording at
sub-millisecond resolution when it isn’t possible, than it is to not allow sub-
millisecond resolution when it may be possible.

Thus, times and durations are expressed in microseconds (us) using 64-bit

long long variables.

6.4 Data

In addition to maintaining time-based details of the simulation, details of the
data in the simulation must be maintained. In particular, the traffic in various
parts of the network must be maintained, so that, for example, the simulation
is accurate during periods of network congestion. Every packet which travels
across the network will record its size, in addition to any other parameters it
needs to record. This data type is called ‘DataSize’, is also a 64-bit long long
integer, and is in units of bytes. It is signed because, like times, DataSizes may
also store differences in sizes, and these can be negative. The 64-bit integer
size was chosen as a result of similar considerations to those for times, that is,
accumulation of many individual data sizes. It gives an effectively infinite upper

limit of 8 million terabytes and lower limit of -8 million terabytes.

27

6.5 Identifiers and Keywords

At any point in time, the simulation may contain many entities of various types.
These entities need to communicate with one another; this requires that they
somehow identify one another. When the simulation is running, internally it
is sufficient to have a reference or pointer variable to another entity, which
essentially identifies the entity by its memory location. However, this is not
a persistent identification mechanism, and so is useless for identifying entities
between instances of the simulation, such as in logfiles. The ‘identifier’ type
is used to identify individual instances of the various other data types in the
simulation, usually entities. Since identifiers are used to identify individual
instances within the simulation, an individual’s identifier must be unique for
the lifetime of the individual, to avoid any possible ambiguity.

Given this criteria, identifiers are arbitrarily long strings of alphanumeric
characters, with some punctuation also allowed. Specifically, identifiers are those
strings which match the Perl-style regular expression ‘[A-Za-z0-9_-.,]1+".

‘Keywords’ are similar to identifiers, however, their role is closer to that of
keywords in programming languages. Keywords are used to identify types in
the simulation, rather than individuals. For example, entity and event types are
keywords. Since keywords identify individual types, they must also be unique

for the entire duration of the simulation, to avoid ambiguity.

6.6 Collections

In addition to standard collection data types such as arrays and linked lists,
several collections are used extensively throughout the project.

The ‘PointSet’ is a collection of points in a 2D plane, and which is optimised
for efficient results of geometric queries, such as finding nearest neighbours and
range searches.

As described in Section 6.5, a very common operation is to look up the

individual of a given identifier, or the type of a keyword. These are implemented

28

using dictionaries, where the keys are identifiers or keywords. The ‘IdTable’ and
‘KeywordTable’ types are these generalised dictionaries, with the values being
any type desired®. IdTables and KeywordTables are the most commonly used
collections of objects identified by Identifiers (such as Entities), and types which
have Keywords (such as the various Entity types like EntityClient, EntityServer,

and so on).

7 Costs

7.1 Introduction

In the course of running the network, actions incur penalties. These penalties
are called costs and can affect various system resources. Costs are made up of
cost components, each of a particular type. In the simulation, costs have two
components, TimeCosts and DataCosts. TimeCosts indicate that an action has
taken some period of time, or (equivalently) that an action has been delayed
by some period of time. DataCosts indicate that an action has caused some
network traffic. In general, a cost will have both time and data components,
although either or both may be zero.

During the simulation, “current” and “total” costs are maintained. The cur-
rent cost is a measure of the cost present in the system at the current point
in time, that is, the current time delay of actions currently executing and the
amount of traffic in the server LAN. The total cost is the integral of the cur-
rent cost over time, that is, between each timestep from ¢, to ¢., the quantity
e X |tc — tp| is added to the total cost, where c, is the current cost at time ¢..
This gives rise to a stepwise (rectangular) overestimate of the integral, as shown
in Figure 5. This means that the total cost is in fact an upper bound on the
overall cost of the simulation. A tighter upper bound can be found by using

integral approximation methods such as the trapezoidal method or Simpson’s

5Due to C++ limitations with templated typedefs, these are actually implemented as
macros.

29

Stepwise overestimate
Actual cost

Cost ——m————————

Time

Figure 5: Cost overestimation. The area under the red stepwise cost approx-
imation function is greater than the area under the blue smooth actual cost
function.

rule.

The current cost can be separated into unavoidable and avoidable parts. As
described in Section 6.2, the unavoidable cost is comprised of those costs which
must always be incurred, such as upstream client packets, and the avoidable
cost is comprised of those costs which are a result of a particular allocation or
communication strategy, and so could conceivably be improved (or even elim-
inated entirely) by a better strategy. The motivation for this is that network
saturation can be the result of either avoidable or unavoidable costs. When
caused by unavoidable costs, it is simply a limitation of the available network
architecture, and so is of no further concern. However, when it is caused by
avoidable costs, the network saturation may be the result of a poor strategy.
This means that the network usage recorded is not the true network traffic re-
quired, but rather has been saturated at the network bandwidth. This generally
causes the traffic to “smear” forward in time, since a saturated network induces
lag (time delay). Figure 6 illustrates the situation, where the actual network
traffic includes C, but the traffic recorded doesn’t include C, and is more like B
alone. The distinction between avoidable and unavoidable costs is a natural one
to make, and is very useful in detecting when recorded traffic has been distorted

as a result of the underlying unknown strategies involved.

30

Bandwidth

Network Traffic

Figure 6: Network saturation from avoidable costs. A indicates the unavoidable
cost, B indicates the avoidable cost resting on the unavoidable cost, and C
indicates that portion of the avoidable cost which is lost due to saturation.

7.2 Cost Internals

Different kinds of costs depend upon different factors. Different instances of
costs will depend on their factors in differing quantities. For example, the cost
of sending a packet may depend linearly upon the size of the packet (and is
thus different for differently sized packets), whereas the cost of a client joining
the network may be constant. Thus costs need to be specified with adequate
flexibility to accommodate this situation.

The solution chosen is to specify costs as an array of n coefficients, that
is, the TimeCost and DataCost components are each an array of n coefficients.
The actual value of an instance of a cost is found by “flattening” the cost,
which involves multiplying each of the cost’s coefficients by the value of the

corresponding variable in the cost instance, and then adding these together.

That is, for a cost component (set of coefficients) ci,ca,...,¢, and instance
variables Vi1, Vs,...,V, with values v1,vs,...,v,, the flattened cost is civ1 +
covg + - - - + cpvy,. The value of n and the instance variables Vi, Vs, ..., V,, are

particular to each different type of cost. The particular cost type determines
the value of n and the variables against which these coefficients are multiplied
are determined.

Costs are represented in plain text by each of their components separated by

whitespace. The components are listed in a well-defined order, which is Time-

31

Cost followed by DataCost. Each component takes the form {ci,co,...,cn},

meaning that costs have the representation {t1,t9,...,t,} {d1,ds,...,dy}.

7.3 Kinds of Costs

A special kind of cost is the Scalar Cost, which has only one coefficient for both
TimeCost and DataCost. These represent the special case of a constant cost
which depends upon nothing. As such, they are useful in many places where
one just needs to record a single, independent cost, for example, the result of
flattening a cost instance is a scalar cost, and the current and total costs are
also scalar costs.

There are two other main kinds of costs; those incurred when a client updates
its state, discussed in Section 9.4.2 (with the update state packet entity), and
those incurred when a client is assigned to a server, discussed in Section 9.5.2

(with the assignment packet entity).

7.4 Template Costs

The simulation maintains a set of template costs. The various cost-incurring
actions are identified by their unique identifier, and each is mapped to their
corresponding template cost. The template costs are the actual cost coefficients
used for these actions, and so are multiplied against the values of the cost
instance variables, as described in Section 7.2. The template costs may be
any kind of cost, although some kinds of costs are defined specifically for one

template cost.

7.4.1 Template Cost Instances

The set of template costs present in the simulation are now briefly described.

e The ‘updateState’ template cost is a cost of the type ‘updateState’, de-
scribed in Section 9.4.2. It is evaluated and added to the current cost

whenever a client updates its state.

32

e The ‘assign’ template cost is a cost of the type ‘assign’, described in Sec-
tion 9.5.2. It is evaluated and added to the current cost whenever a client

is assigned to a server.

e The ‘overfullServer’ template cost is a scalar cost which is the penalty
incurred whenever a server’s capacity is exceeded. It is described in detail

in Section 9.2.2.

8 Events

The simulation is event-based, and as such centers around events which occur
at instantaneous points in time. The events are then stored in a priority queue
based on increasing event time, and events are taken in turn from the head of
the queue and executed. The execution of an event can add more events to the
priority queue.

In general, an event will manipulate a single object in the simulation. This
object, usually an entity, is referenced by an identifier which is present in all
events. If an event doesn’t need to reference anything its identifier can easily be
padded with a short dummy value. Entities are discussed in detail in Section 9.

Since supporting events which last for a non-zero duration would add consid-
erable complexity to the simulation, if such events are needed they are instead
modeled by separate “begin” and “end” versions of the event, which are used to

delimit the extent of the event in time.

8.1 General Format

As described in Section 10, events are stored in simple, plain text logfiles, with

one event per line. Events have the following general plain text representation:

event_time 1id event type | event options ... |

e The event_time field is the time of the event. This is common to all types

33

of events and is of relevance when sorting the events, hence it appears

first.
e The id field is the identifier the event is dealing with.

e The event type field is a keyword identifying the type of event being

recorded.

e Finally, the remainder of the fields in the event specify options and details
of the event; their format is specific to the particular type of event (as

specified by event_ type).

The following sections describe the main types of events, how they function and

their format.

8.2 Entity Creation

The create event type specifies the creation of an entity. It has a general
form, but takes several specific forms, depending on exactly which type of entity
is being created. These specific variants are detailed in the sections of the
individual entities, Sections 9.1 — 9.5.

Its general plain text representation is:

event_time entity id create entity type | creation_options ... |

e The entity id field specifies the identifier of the entity which is to be

created.

e The entity type field is a keyword identifying the type of entity which is

to be created. The creation of specific entity types is detailed below.

e The remaining fields form the creation_ options, these are optional fields
which are particular to the specific entity type being created. Typically
they are used to specify some kind of initial state for the newly created

entity.

34

8.3 Entity Destruction

The destroy event type specifies the destruction of an entity. Its plain text

representation is:
event time entity id destroy

The entity id field identifies the entity to be destroyed and removed from
the simulation. Exactly what happens to any dependencies of the entity (such
as clients of a removed server), depends upon the type of entity being destroyed

and its specific destructor.

8.4 Sending and Receiving Packet Entities

The send event type specifies that the packet identified by packet id is com-
mencing its journey across the network from its source to its (unknown) desti-

nation. Its plain text representation is:
event time packet id send

Packets may only be sent once, after they are sent, they should be received
and subsequently destroyed.
The receive event_type specifies that the packet identified by packet id is

ending its journey across the network. Its plain text representation is:
event_time packet_id receive

A packet can only be received if it was sent at some time in the past.

8.5 Template Cost Specification

The setcost event type specifies the value of a template cost. (Template costs

are described in Section 7.4.) Its plain text representation is:

event_time template cost_id setcost cost type cost wvalue

e The template cost_id field identifies the template cost being set.

35

e The cost_type field identifies the type of cost the template cost is to be

set to.

e The cost_wvalue field is the actual value of the cost. Costs are represented

in plain text as described in Section 7.

For example, to set the ‘overfullServer’ template cost to a scalar cost with time

cost of 10000 and no data cost, the following event may be used:

0 overfullServer setcost scalar {10000} {0}

9 Entities

An entity is an individual ‘object’ in the simulation. The simulation has three
different types of entities; clients, servers and packets. Each entity in the sim-
ulation is identified by a unique identifier (identifiers are described in Section
6.5).

Entities are created, destroyed, and generally manipulated with events, as
described in Section 8. However, since entity creation events are specific to each
type of entity, these events are discussed with their respective entity type in the

following sections.

9.1 Client Entities

A client entity represents a client of the game, connected to the main game
network, which allows a player to play the game. Clients are assigned to a par-
ticular server called their ‘assigned server’, and all of the client’s communication
is with this server alone. A client’s assigned server is dynamic, meaning that
it may change throughout the simulation in order to best accommodate the
client’s changing state.

Clients maintain the state of the player (the ‘player state’), which is simply

their location in the arena. The state could be extended to cover other informa-

36

tion, such as the player’s velocity, but for the purposes of the simulations under
investigation, the position alone is sufficient. Section 13 describes how this state

is modeled between the points in time when it is definitively known.

9.1.1 Client creation events

The client entity_type in a creation event indicates that a client entity is to

be created. Its plain text representation is:
event time client id create client initial player state

The only creation option, initial player state, is the initial state of the
client when it joins the game at the time of the event. It is the plain text rep-
resentation of a player state, which is simply its location, as a pair of floating
point coordinates. The coordinates are surrounded by parentheses and sepa-
rated by a comma in the usual convention. For example, (795.472,209.301).
If the player state is extended to store other information, this information can
be stored after the location, separated by whitespace. Since the fields defining

a player state are always known, they can be unambiguously parsed’.

9.2 Server Entities

Server entities represent servers in the network. The set of clients assigned to a
server are called its ‘assigned clients’.

Servers have a capacity in terms of the number of clients they can be as-
signed. This capacity is not a hard constraint, any number of clients can be
assigned to a server. A server with more assigned clients than its capacity al-
lows is said to be overfull. A cost is incurred when a server is overfull which

will be described in Section 9.2.2.

"If optional fields are desired then the plain text representation can be modified to keep
player states unambiguously parsable.

37

9.2.1 Server creation events

The server entity type in a creation event indicates that a server entity is to

be created. Its plain text representation is:
event_time server_id create server | client_capacity |

There is a single creation option, the client capacity of the server. If it is

omitted, it defaults to 32.

9.2.2 Overfull server costs

A server which is overfull has exhausted some of its resources, such as CPU
cycles, RAM, or network bandwidth. This means that the server will not per-
form to its best, and this is accounted for with the ‘overfullServer’ template
cost (template costs are described in Section 7.4). This is a scalar cost which is
added to the current cost for each client which is above the capacity limit of a
server. These clients are called overfull clients, as they are the clients causing
the servers to be overfull.

We write the number of clients currently assigned to the i-th server as a;
and its capacity as ¢;. For m servers, the total number of overfull clients is given
by

m
n = Zmax(ai — ¢, 0).
=1

During the simulation the current cost always contains the quantity n X t,y,

where 2,5 is the ‘overfullServer’ template cost.

9.3 Packet Entities

Packet entities represent packets in the network. They are used to transfer
atomic messages between servers and clients. Clients can only send packets to
the server they are currently assigned to. Servers may send packets to any client
or server, but if they send a packet to a client which is not assigned to them,

the packet must first travel to the client’s assigned server.

38

As described in Section 6.2, packets record only their source entity, so as
not to reveal the allocation strategies in use. However, packets are still sent and
received, so that they are in the network for a finite amount of time. This makes
sense, because we are interested in what information is being sent and when,
but it doesn’t matter particularly to which server or client it is being sent to.
In any case, the exact server or client involved can be deduced from the current
allocation.

There are two specific types of packets: UpdateState packets and Assign
packets. UpdateState packets are used by clients to notify their assigned server
that their player state has changed, and Assign packets are used by servers
to indicate to other servers that a client’s assignment has changed. Both are

discussed in their specific sections, 9.4 and 9.5 respectively.

9.3.1 Packet creation events

Packet entities are created by creation events with entity type of packet_type,
where type is a keyword specifying the type of packet to be created. Its plain

text representation is:

event_time packet id create packet_type src_entity id miss-

ing_equivalents | packet options ... |

The src_entity id field is the identifier of the entity (client or server) from
which the packet is originating.

The missing _equivalents field is an integer indicating how many other pack-
ets equivalent to this one have been omitted due to packet downsampling. As
described in Section 13, performance concerns mean that these other packets
have not been explicitly created, but due to cost concerns their existence must
still be acknowledged and accounted for. This field indicates how many of these
similarly typed missing packets are being represented by the packet. When no

downsampling is in use, this field is always 0.

39

The remaining fields form the packet options, these are any optional fields

particular to the specific type of packet being created.

9.4 Update State Packet Entities

Update state packets are packets which carry notification of a given player’s
change of state.

Conceptually, they are used both upstream, for a client to notify its server of
a state change, and downstream, for a server to notify a client of a state change
for some other client. However, for performance reasons (in both the recording
of logfiles and the actual simulation), only the upstream packets are explicitly
present, downstream packets are handled implicitly by considering their network
cost in update state costs, discussed later in Section 9.4.2.

They store a complete copy of the player’s new, updated state. It may be
feasible to transmit only incremental changes in state, however this wouldn’t be
robust in the presence of packet loss, which is often a real concern in multiplayer

Internet games®.

9.4.1 Update State packet creation events

The packet_update_state entity type in a creation event indicates that an

update state packet entity is to be created. Its plain text representation is:

event_ time packet id create packet_update_state src_entity id miss-

ing_equivalents new_player state

The src_ entity _id and missing _ equivalents fields are the same as for general
packets.

The only packet option, new player state, is the updated state of the player
which the server is being notified of. It has the same player state plain text

representation described in Section 9.1.19.

8The packet loss is usually due to the use of an unreliable network transport (such as UDP)
for speed.
9As such, it may actually be more than one field, but as detailed in Section 9.1.1 this is

40

9.4.2 Update State Costs

This is the cost incurred when a client notifies its server of a change in its state.

The variables it is in terms of are:

1. One — that is, the first cost coefficient is a constant.
2. The number of neighbours.
3. The number of neighbours assigned to other servers.

4. The number of distinct servers the neighbours are assigned to.

A typical state update cost might be something like {100,50,50,03}. The first
value indicates the (constant) size of the update state packet. The second and
third values are used to specify the downstream packets sent to the neighbours
informing them of this state update. The second value indicates the size of the
packet sent to each neighbour, the third value is the interserver journey of the
packet for those neighbours which are not on the same server as the updating
client. The fourth value of zero indicates that the cost does not depend on the
number of distinct servers in the neighbourhood. However, this could be used to
send only a single interserver packet to each server in the neighbourhood which
then forwards it on to the appropriate clients, rather than possibly many nearly

identical packets to each server, which is an inefficient use of the LAN.

9.5 Assign Packet Entities

Assign packets are packets which carry notification of a client’s assignment to

a particular server. They are sent from the server which has decided to do the

assignment, which is usually the server to which the client is being assigned.
Exactly where the packets are sent to depends on the exact method used

to inform servers of client assignment changes. Due to the design of packets

not a problem as it can always be unambiguously parsed.

41

the exact destinations aren’t known, but their number is; it is controlled by the

assignment cost, as described in Section 9.5.2.

9.5.1 Assign packet creation events

The packet_assign entity type in a creation event indicates that an assign

packet entity is to be created. Its plain text representation is:

event_time packet id create packet_assign src_entity id miss-

ing _equivalents assigned client assigned server

The src_ entity _id and missing _ equivalents fields are the same as for general
packets.

There are two packet options, assigned client and assigned_ server. The as-
signed_ client field is the identifier of the client being assigned, the assigned_ server
field is the identifier of the server that assigned client is being assigned to. This
assignment overrides and replaces any previous assignments, so prior to the as-
signment the client is deassigned from its previous server, deassigned_ server.

The packet is sent from the server which has made the decision to allocate.
Generally this is assigned_ server, but it could be any server. For example, a
server may exist specifically to make allocation decisions, in which case all assign

packets would be sent from this server.

9.5.2 Assignment Costs

This is the cost incurred when a client is assigned to a server. The variables it

is in terms of are:

1. One — that is, the first cost coefficient is a constant.

2. The number of clients assigned to assigned_ server, excluding assigned_ client.
3. The number of clients assigned to deassigned_ server, excluding assigned_ client.
4. The total number of clients.

42

5. The total number of servers.

A typical assignment cost might be something like {100,200,300,0,0}. The
first value indicates the (constant) overhead involved in assigning a client (for
example, notifying the client’s FEP of the new server to direct communications
to). The second and third values reflect the notification of the affected clients
of the assignment change. The fourth value of zero indicates that assignments
don’t cause all clients to be notified. Similarly, the fifth value of zero indicates
that assignments don’t cause all servers to be notified.

Typically not every client or server will need to be notified of assignments.
However, situations which require this flexibility are conceivable. For example,
if every server knows the assignment of every client, then when an assignment

occurs all the servers must be notified.

10 Logfiles

Logfiles are simply collections of events stored in plain text files. They are used
in both input and output modes; input for reading a set of events to be used in
the simulation, output for recording (logging) the events which are executed by
the simulation.

Logfiles have one event per line, with fields of the events separated by whites-
pace. The exact format of events is detailed in Section 8.1. Blank lines (includ-
ing those containing only whitespace), ill-formatted lines and lines beginning
with the hash symbol (‘#’) are ignored.

This file format means that logfiles are simple and easily parsed by both
machine and human; it allows them to be scrutinized by hand when necessary,
and also allows the application of standard Unix text-manipulation utilities
(such as grep, sort, sed, awk, etc) to the logfiles.

There are three different types of logfiles, characterised by the types of events

they may store and their intended purpose in the simulation.

43

10.1 Player state logfiles

Player state logfiles record the state of the game players. A player state logfile
is a “complete” record in that it could be “played back” to reconstruct an exact
replay of the game from which it was recorded. It records what the players have
done (particularly their movements), without any concern for issues peripheral
to this, such as the network or strategies which happen to be in use. This means
that it is essentially a record of the upstream data from the clients to the servers,
because the clients notify the servers of what they are doing in the game.

The specific events allowed are:

Creation of client entities (create client)

Creation of update state packet entities (create packet_update_state)

Destruction of entities (destroy)

Sending of packets (send)

Receiving of packets (receive)

10.2 Architecture logfiles

Architecture logfiles record the architecture used to play a game. The archi-
tecture is the server-side “hardware” setup on which player state logfile events
may be played back on. It includes the servers themselves and the server LAN
network, and their associated costs, limits and other properties.

It is usual to have an initial “setup” phase of the simulation in which only
architecture events are executed. However, in keeping with the discrete event
simulation design, the architecture may be changed at any point in the simula-
tion. This can be useful for testing situations such as how the system performs
when a server is destroyed (for example, it crashes) at a certain point in time.

The specific events allowed are:

44

e Creation of server entities (create server)
e Destruction of entities (destroy)

e Setting of template costs (setcost)

10.3 Allocation logfiles

Allocation logfiles record the assignments of clients to servers. It is the output
of an allocation strategy, and can thus be used instead of an allocation strategy.
In this way, allocation logfiles hide the actual allocation strategy used, recording
only the decisions it makes. This allows allocation strategies to be compared
without needing to disclose their methods.

The specific events allowed are:

Creation of assign packet entities (create packet_assign)

Destruction of entities (destroy)

Sending of packets (send)

e Receiving of packets (receive)

For example, the allocation logfile events to assign client CLI_0034 to server

SRV_010 would look like

1000 PKT_00632 create packet_assign SRV_010 CLI_0034 SRV_010
1010 PKT_00632 send
11010 PKT_00632 receive

11020 PKT_00632 destroy

11 Allocation Strategies

A substantial goal of the project is to allow comparisons between various alloca-

tion strategies. This suggests the Strategy Design Pattern (or Strategy DP) [1]

45

for the design of allocation strategies. The AllocationStrategy class defines
the interface of an allocation strategy; that is, what it means to be an allocation
strategy. The AllocationStrategy class is subclassed for the actual implemen-
tations of the various allocation strategies. The Strategy DP means that any
particular subclass of AllocationStrategy may be used when an allocation

strategy is needed.

11.1 Interface

Allocation strategies are notified of the execution of events. The allocation
strategy is given the event, and it then determines which type of event it is and
what action should be taken, if any. The external interface is a single notify
method with an Event object as its sole parameter. An internal interface is pro-
vided by way of a notify_type method for each type of event, with parameters
particular to the type of event. This means that the work of determining the
event type and extracting the useful information from the event is implemented
only once by the base AllocationStrategy class. Particular allocation strategy
sub-classes need only override the notification methods for the event types they
are interested in.

Allocation strategies decide to make assignments based on the information
they receive in notifications. When a strategy is notified of a change, it returns
the (possibly empty) set of chosen assignments. These assignments are stored
as allocation logfile events, described in Section 10.3. The events are usually
scheduled for immediate execution. They are added to the currently running
simulation, and may also be stored in an allocation logfile.

The interface allows allocation strategies to augment the arena display (de-
scribed in Section 6.1) with useful graphical information about how the alloca-

tion is being determined.

46

Figure 7: An example of a Voronoi diagram. Sites are shown as black dots and
Voronoi edges are shown in blue.

11.2 Default Allocation Strategy

The default allocation strategy used by the simulation is a simple and straight-
forward allocation strategy called cellular. It is relatively efficient and gives
reasonably good results, making it a good benchmark for more advanced al-
location strategies. Part III discusses the results of experimentally testing the

cellular allocation strategy.

11.2.1 Background

The Voronoi diagram [2] is a geometric structure which captures information
about the proximity of points in the plane to various identified points known
as sites. Each site lies within its associated Voronoi region — the set of all
points which are closer to that site than to any other. The boundaries of the
Voronoi regions, called Voronoi edges, are those points equidistant from two
sites. The points where Voronoi edges meet, called Voronoi vertices, are those
points equidistant from three or more sites. Figure 7 shows an example of a
Voronoi diagram.

The Voronoi diagram is useful because it can be used to efficiently answer
proximity queries. The two proximity queries most useful in this application are

to find the nearest site to a query point ¢ (that is, which Voronoi region g lies

47

= Arena |
time - 201000 (paused)
Current Gost.= {z0000} {0

Total Cost = {3838970200} {98390700F

Figure 8: An example of how the Cellular allocation strategy divides the arena
into cells, with each cell handled by a server. The Voronoi edges are in blue and
the small open circles are the server representatives.

in), and to find the nearest neighbour of a site s, which is the site ¢ closest to s.
For n sites, the Voronoi diagram is of size O(n) and takes O(nlogn) time
to construct. After this initial preprocessing step it takes only O(logn) time to

find the nearest site to a query point and the nearest neighbour of a site [2].

11.2.2 Algorithm

The cellular allocation algorithm is based on the k-Means clustering heuristic
[5]. For each server, a representative point is maintained which is the average of
the locations of the server’s assigned clients. The Voronoi diagram of the server
representatives is used to ensure that all clients are assigned to the server with
the closest representative.

As the clients move around the arena, the representative points of the servers
also move, since they are determined from the locations of the clients. This
causes the Voronoi diagram to change, and if this causes some clients to change
Voronoi regions, then these clients must have their assignment changed as their
nearest representative point has changed.

Initially, clients are randomly assigned to empty servers until every server

has a single client.

48

— Arena |
time - 201000 (paused)

Current Gosk= {z0000} {0
TotarCost = {3898970200} (983907007

Figure 9: The same as Figure 8 but also showing the neighbourhood of each
client. The neighbourhood edges which cross Voronoi edges correspond to in-
terserver traffic.

As shown in Figure 8, the Voronoi diagram effectively divides the arena into
cells, where each cell is handled by a single server. Figure 9 is the same as
Figure 8 but with edges showing the neighbourhood of each client. Neighbour-
hood edges which cross Voronoi edges will cause interserver traffic whenever the
clients involved update. This display can be particularly insightful, as it allows

problem areas of the current allocation to be examined directly in the arena.

11.3 Future Allocation Strategies

As mentioned in Section 11.2, the Cellular allocation strategy is just one of many
possible allocation strategies which may be implemented. This section describes

one of the possible allocation strategies which is expected to be promising.

11.3.1 Combining Allocation Strategies

The Strategy Design Pattern allows allocation strategies to be combined in novel
and interesting ways.

For example, an allocation strategy called Dual could be written which uses
n other “sub’-allocation strategies, called Subl, Sub2, ... Subn, all of which

are arbitrary allocation strategies. Whenever Dual is notified of an event it in

49

turn notifies each of the Sub4, for 1 < % < n, of the event. None of the Sub?
are aware of this intervening “layer”. Dual then receives the assignments from
each Sub% resulting from the event, and chooses to return the “best” of these
assignments.

Comparison of assignments would defined in some way, and perhaps even a
parameter of Dual. The most obvious assignment comparators would be related
to the foreseeable cost and impact of the assignments, but some may be entirely
unrelated to the cost, such as how recently the entities involved were previously
assigned.

Another example is an allocation strategy which uses a SubA allocation strat-
egy when certain conditions in the simulation are true, and a SubB allocation
strategy when these conditions are false. This allocation strategy would be quite
simple to write, but would be excellent for investigating and developing ‘hybrid’
allocation strategies which are combinations of other, more specialised alloca-
tion strategies. A good example is a strategy which uses different sub-allocation

strategies depending on whether the simulation contains many or few clients.

12 Communication Strategies

The set of clients which are informed of a given client’s actions is called the
neighbourhood of that client, and the informed clients are called the neighbours
or neighbourhood clients.

As described in Section 6.2, clients send upstream packets to their assigned
server and receive downstream packets from it. The upstream data consists of
notifications of the player’s actions and the downstream data consists of the
actions of other players the client is being informed of.

The amount of upstream data is essentially fixed, as the client is always
informing the server of its actions, but the amount of downstream data de-

pends upon the number neighbourhoods this client is a part of. In addition,

50

since the neighbourhood relationship is one to many, clients must receive more

downstream data than they send upstream.

12.1 Communication Strategies Implemented

The project implements two communication strategies. For a given client c,

e the ‘circle’ communication strategy chooses neighbourhoods to be the
clients which lie within a circle of radius r centered on the location of

¢ (where r is a parameter of the strategy), and

e the ‘unearest’ communication strategy chooses neighbourhoods to be the

u nearest neighbours [2] of ¢ (for some particular value of u).

The ‘circle’ communication strategy appears to be the more promising of the
two strategies. This is because the ‘unearest’ strategy suffers from the problem
that in sparse areas, some of the neighbours may be considerable distances away.
This means that they are more likely to be on other servers, and may therefore
cause unnecessary interserver traffic.

A possibility which was not explored, but is expected to be promising, is
a hybrid combination of both ‘circle’ and ‘unearest’. This would choose neigh-
bourhoods to be those clients which are both a u nearest neighbour of ¢ and also
lie within a given circle centered on the location of c. This would avoid choosing
nearest neighbours which are considerable distances away, avoiding the problem

‘unearest’ has in sparse areas.

12.2 Interface

The CommStrategy class uses the Strategy Design Pattern [1] to abstractly define
the interface used by communication strategies for choosing the neighbourhood
of a client.

In a fashion similar to allocation strategies, communication strategies are

notified of the execution of events. However, unlike allocation strategies, no-

51

tification of communication strategies has no return value. Instead, the com-
munication strategy can be queried at any point in time, which returns the
neighbourhood of the queried client entity. Neighbourhoods are represented

simply as a collection of clients.

12.3 Communication Graph

The neighbourhoods of all the clients form a graph structure, where the nodes
are the clients and two clients u and v are joined by a directed edge uv if v is
in the neighbourhood of u. This graph is called the communication graph.

It would be possible, and indeed probably preferable, to have communication
strategies maintain such a graph, since that is what they are in essence doing
with the queries they provide. They would then provide read-only access to this
graph, to allow the neighbourhood of a client to be found.

A communication graph is not explicitly maintained because it would add
substantial complexity to the project, while the current system of querying the
neighbourhoods of individual clients is adequate. If it is desired, the communi-
cation graph can be constructed by simply querying the neighbourhood of each

client.

12.4 Communication Graph Layout

The communication graph is displayed in its own window. It is laid out in a
fashion which highlights the two types of edges: those joining clients assigned
to the same server (intraserver edges), and those joining clients assigned to
different servers (interserver edges). This allows the user to see problem areas
relatively easily, and to allow the cause of these to be determined by relating
back to the arena display.

The layout is quite simple, and is illustrated in Figure 10. The clients as-
signed to a given server are arranged in a circle (of fixed radius) and coloured

the same as their server. Each of these circles is then arranged with its center on

52

= Communication Graph el = Communication Graph ==
Comm Strategy: circle(500) Comm Strategy: circle(500)
Interserver links = 14 Interserver links = 316

Intraserver links = 224 Intraserver links = 1028
< > IR
%
/’A
ST
</ P, S

Figure 10: Examples of communication graphs.

the circumference of a larger circle. The clients are then joined to their neigh-
bourhood clients with directed edges. This arrangement means that intraserver
edges are always contained within their circle, and so intraserver edges of differ-
ent servers won’t cross, and also that interserver edges will always pass through
the central region. The main benefit of this layout are that it conveys a lot
of information at a glance. It is easy to see how populated a given server is
(how many clients it has around its circumference), how dense it is (how many
intraserver edges it has), and of course how many interserver edges there are (as
these are to be avoided).

This layout scales poorly as the number of clients and servers increases. It
is expected that better layout could be designed given sufficient development

effort, however this is outside the scope of this project.

13 Client Movement Modeling

As noted earlier in Section 10, logfiles can be very large if they have a high
resolution. This introduces some substantial performance issues. For example,
a typical situation could be 1000 clients updating their state 10 times per sec-

ond. To create, send, receive and then destroy an update state packet typically

53

requires about 140 characters in the logfile. This results in a logfile which grows
at a rate of about 1.3Mb/s. Both reading and writing this rate of data is a
formidable task. In addition, the priority queue operations should be taken into
consideration (and are typically O(logn)); these also slow the system.

This problem is handled by the modeling of the client movement. This
involves downsampling the state update packet stream, that is, recording only
every n-th packet (referred to as the key packets'?) for each client and discarding
the rest. At the time of key packets, the state of the client is definitively specified
by the contents of the packets; between key packets a mathematical model
is used to approximate the state of clients. The model not only allows the
state to be interpolated and extrapolated from the key packets, but also allows
intersection style proximity queries to be made, for example, to determine if two
clients are within a certain distance of each other during a given time interval.

A large disadvantage of these modeling techniques is that they can make
the computational complexity of updating the state of a set of player much
worse. When modeling is not used, techniques such as Voronoi diagrams (Sec-
tion 11.2.1) allow the set of clients “close” to some other client can be found
in O(logn) time. However when modeling is used, the approximated positions
of all n clients must be compared to the client’s approximated position, which
takes O(n) time. An expected future development to this would be a hybrid
system, which uses the efficient techniques to discover the set of clients whose
approximated positions should be compared explicitly. This would give the

benefits of modeling without the poorer computational complexity.

13.1 Implementation

The PlayerState class, briefly introduced in Section 9.1, is the core of the
modeling system. In addition to defining the interface for obtaining and setting

the state, it also abstractly defines the interface for estimating the state at any

0By analogy with key frames in computer animation.

54

point in time, estimating the derivative of the state at any point in time (that is,
the client’s velocity), estimating the intersection of the state with lines and other
geometric constructs, and estimating the minimum distance between two clients
in a given time period. The PlayerState class itself is not strictly abstract, as
it implements the linear model, but it may easily be subclassed, allowing any

model of the client movement to be substituted.

13.2 Details of the model used

In general, the performance of the model will be related to its sophistication.
A default linear model is implemented, however it can easily be substituted for
more sophisticated models if required.

The linear model makes the assumption that clients only travel in a straight
line between any two points a¢ and b. More sophisticated models, such as
quadratic, cubic, or higher polynomial functions, would increase accuracy, but
would require disproportionally more programming time, and so the linear model
is satisfactory.

We use vector notation, where boldface indicates a vector, and positions are
represented as vectors from some origin.

The linear model stores the “current” position p. and the corresponding
time ¢, and the “previous” position p, and time ¢, of the client. This allows the
velocity to be estimated at any point in time by v = 1;’0’%;?. The estimation of
the position at any time ¢ is given by p, = pp + v X (¢t — t.). Proceeding from
these elementary estimations, it is then possible to estimate the intersection of
the client with various geometric structures, such as lines, rays and circles.

The estimated minimum distance between two clients is more interesting.
Here we have the situation of two clients a and b moving at arbitrary velocities
v, and v, between two points in time #; and ¢y, and we wish to find their

minimum separation during that time. We examine the vector m joining the

position of the two clients at time %, clearly this will be of minimum length when

55

it is perpendicular to v, and v,. Here a; and b; are the positions at time ¢;
of a and b respectively, and a; and by are the positions at time ¢y of a and b

respectively, the vector m and the time ¢ at which it occurs is given by

(b; —a;) - v,
t = ——F——
(va - Vb) *Va

m = (ai — bz) + t(Va — Vb)

There are three distinct cases:

e t < t;, that is, m is perpendicular before the time period. In this case,
the distance between the clients at the start of the time period, |a; — b;],

is the result.

e t; <t < ty, that is, m is perpendicular within the time period. In this
case, |m|, the length of the vector m, is the result. It is acceptable for m
to be perpendicular at more than one time between ¢; and 7, as all such

m vectors will be of equal length.

e t; <t, that is, m is perpendicular after the time period. In this case, the
distance between the clients at the end of the time period, |a; — by|, is

the result.

14 Bots

As noted in Section 10, the input of the simulation is abstracted by using log-
files, which may come from any source. The two main anticipated sources are
recordings of actual gameplay and generated test scenarios involving bots. Bots
are simple, automated clients which are simulated for the sole purpose of gen-
erating logfiles. They are used because recording actual gameplay can be both

difficult and time-consuming.

56

14.1 Bot Behaviour

Naturally, a bot corresponds to a player (and client) in the simulation. The
bot behaviour is the way in which bots move around the arena. The simulation
uses a simple and straightforward scheme to acheive bot movements which are
considered similar to those expected in some real-world scenarios.

A number of stations are defined at various locations in the arena, and
these stations are joined by directed edges. Initially, the bots are distributed
uniformly throughout the arena, and each bot travels in a straight line to its
nearest station. When a bot reaches a station, it remains (“waits”) at that station
for a random period of time between the station’s minimum and maximum wait
times. While at a station, the bot moves randomly (“wanders”), not traveling
further than the station’s wander distance from the station’s location. When a
bot has finished waiting at a station, it randomly chooses one of the adjacent
stations and travels to that station. In addition, at any point the set of stations
and their adjacencies and properties can be changed, which makes the bots once
again move to their nearest station and continue from there, as they did initially.

An easy and standard way of obtaining a set of stations and their adjacencies
is to take a random set of points and then use their Delaunay triangulation as
the adjacency graph. The Delaunay edges can either all be made bidirectional,
or randomly assigned one of the forward direction, the backward direction, or
bidirectional.

Station files are plain text files storing a set of stations, their properties and

the edges between them.

14.2 Implementation

Bots are implemented by simulating their behaviour separately from the main
simulation. This bot simulation inputs a station file and outputs a player state
logfile containing the events for the movement of the bots.

In the future, performance increases could be achieved by embedding the

57

bots into the main simulation, instead of generating an entire logfile which
must then be loaded entirely into the simulation. This would mean that the
bot events could be added to the simulation event priority queue progressively
throughout the simulation, rather than loading all of the bot movement events at
the beginning of the simulation. This would result in less events in the priority
queue on average, which would allow the queue to perform better. However this
was viewed as a secondary goal, as it provides no more functionality than is

already provided by the logfile method.

58

(a) city (b) wells10 (c) wellsb50

Figure 11: Station files used in bot generation.

Part I11

Results

15 Experimental Design

15.1 Player State Logfiles

The player state logfiles used for the experiments were generated using the bots
described in Section 14. This is because no recordings of actual gameplay were
available from any known sources and making such recordings was well beyond
the scope of the project.

The city, wells10 and wells50 station files were used; Figure 11 shows
their spatial layouts. For each station file a player state logfile was generated
for 100, 200, 500, 1000 and 2000 bots, giving a total of fifteen player state
logfiles. Each has a duration of 2.5 minutes and was downsampled such that

clients update every 10 seconds.

15.2 Architecture Logfiles

The server load is defined as the average number of clients per server. Each

server was given a capacity of 32, and the server load was given the values of

59

‘ Template Cost ‘ Cost Type ‘ Time Component ‘ Data Component ‘

updateState | updateState {100,50,50,0} {100,50,50,0}
assign assign {100,200,300,0,0} | {100,200,300,0,0}
overfullServer scalar 10000 0

Table 2: Template cost instances used in the experimentation architecture log-
files.

16, 24, 32 and 36. This tests the cases of when the servers are expected to
be half-full, three-quarters full, completely full, and an eighth overfull. Thus,
the number of servers in a given architecture logfile is simply the number of
clients desired divided by the server load. Twenty architecture logfiles were
generated, one for each combination of 100, 200, 500, 1000 and 2000 clients with
server loads of 16, 24, 32 and 36'!. The template cost instances (Section 7.4.1)
used are shown in Table 2. (For details on the cost instance variables used
for the ‘updateState’ and ‘assign’ cost types, refer to Sections 9.4.2 and 9.5.2,

respectively.)

15.3 Simulation Execution

For each pair of player state and architecture logfiles, the simulation is run with
various combinations of allocation and communication strategies.

Two allocation strategies are used,

e the cellular strategy described in Section 8, and

e 3 random allocation strategy, mainly used for debugging purposes, which

statically assigns clients to a random server.

The communication strategies used are the two described in Section 12.1 — the
‘circle’ strategy, for various values of the radius r, and the ‘unearest’ strategy,
for various values of u. For the city based scenarios r is given the values 500,

1000 and 1500, whereas for the wells10 and wells50 based scenarios r is given

1Gince none of the client numbers are divisible by the server loads, the number of servers
actually used is the ceiling of the result of the division. This means that the server load is
actually an upper bound on the average number of clients per server.

60

the values 5000, 10000 and 15000. This is because wells10 and wells50 have
larger dimensions than city and so the larger circle radii compensate for the
clients being more sparsely distributed (on average). The values of u used are
5 and 10, for all three station files.

To summarise, the experiment has 5 independent variables — the station file,
number of clients, server load, allocation strategy and communication strategy.

The number of scenarios is given by

3 stations x 5 numbers of clients x 4 server loadsx

2 allocation strategies x 5 communication strategies = 600 scenarios.

The simulation is run on each of these scenarios, and the resulting allocation
logfile is recorded. In addition, the following 5 dependent variables are recorded
at each point in time during the simulation — the current cost, total cost,
number of interserver links, number of intraserver links, and the number of
clients causing their server to be overfull. However, since the current and total
costs each consist of a scalar time and data component, the number of dependent

variables is actually 7.

16 Results and Discussion

The results recorded are 12 dimensional, as they have 5 independent variables
and 7 dependent variables. This high dimensionality means that it would be
extremely difficult and impractical to directly analyse the entire set of results.
Instead, smaller, lower dimensional sections of the results are analysed. Small
shell scripts and Unix utilities are used to manipulate the results, obtaining the
desired information in a format suitable for plotting with Gnuplot. A sample of
the most interesting results is presented here, illustrating some of the insights

possible with the project.

61

8e+12

city stations, random allocation strategy ——
7e+12

6e+12 -
5e+12

4e+12

Total cost

3e+12

2e+12

le+12

0 20 40 60 80 100 120 140
Time (seconds)

Figure 12: The total cost versus time for the cellular and random allocation
strategies, using the city stations.

16.1 Total costs

Since the cost system has been designed to take into account several pertinent
factors, one of the best results to consider is how the total cost progresses
throughout the simulation, and compare this for different allocation strategies.

Consider the scenarios using the city stations, 500 clients, ‘circle’ commu-
nication strategy with radius of 500, server load of three-quarters full (24) and
both the cellular and random allocation strategies. Figure 12 shows the progres-
sion of the total cost throughout the simulation. It can be clearly seen that the
costs of both allocation strategies are accelerating during the simulation, but
the cellular strategy is doing so at a slower rate than the random one. This is as
expected, since the random allocation strategy employs no method of avoiding
interserver communications.

Figure 13 shows the same scenario except using wells50 stations rather than
city. Again, the cellular strategy is better than the random strategy, suggesting
that this may be the case consistently. In addition, after approximately one
minute of simulation, the acceleration of the costs of both strategies begins to
slow and become linear. This may be attributed to the fact that clients in
wellsb0 tend to be more evenly distributed than in city, since wells50 has a

more even distribution of stations.

62

le+12

T T T T T
wells50, cellular allocation strategy —=—

9e+11 wells50, random allocation strategy d

8e+l1l 1
Te+l1l 1

6e+11

Se+1l q

Total cost

4e+1l

3e+1l q
2e+11 q

le+11

0
0 20 40 60 80 100 120 140

Time (seconds)

Figure 13: Asin Figure 12, the total cost versus time for the cellular and random
allocation strategies, except using the wells50 stations rather than city.

8e+12

T T T T T
wells50, cellular allocation strategy —=—
wells50, random allocation strategy —=—

Te+12 | city stations, cellular allocation strategy —s—

city stations, random allocation strategy

6e+12

S5e+12

4e+12

Total cost

3e+12

2e+12

le+12

0 n . . .
0 20 40 60 80 100 120 140

Time (seconds)

Figure 14: The plots from Figures 12 and 13 on the same set of axes.

63

Y%age of overfull clients city, 100 clients

city, 100 clients

%age of overfull clients 0
1

100
80
60
40
20

80
60

(a) front view (b) back view

Figure 15: The percentage of overfull clients versus time, versus server load, for
100 clients using the city stations.

Finally, Figure 14 shows the data from Figures 12 and 13 on the same set of
axes. This clearly shows that the cost for both allocation strategies is much less
in the wellsb0 scenario compared to the city scenario. As before, this can be
attributed to a more even distribution of clients in wells50 compared to city.
Also noteworthy is that although Figures 12 and 13 appear to indicate that
the cellular algorithm is better than the random strategy by a greater margin,
Figure 14 shows that this is an artifact of the differing y scales in Figures 12
and 13.

16.2 Overfull clients

One consideration which is not present in the cellular allocation strategy is the
capacity of servers. The result is that the cellular strategy may allow a small
number of servers to dominate, allocating many clients to those servers and
making them badly overfull. ‘Overfull clients’ are those clients which cause
servers to be overfull, as described in Section 9.2.2.

For the case of the cellular allocation strategy, city stations, 100 clients
and radius 500 circle communication strategy, Figure 15 shows how the fraction
of clients which are overfull, changes as the simulation progresses and for the

various server loads. This shows that this fraction of overfull clients slowly

64

Y%age of overfull clients city, 100 clients
city, 500 clients
city, 2000 clients

city, 100 clients
city, 500 clients
%age of overfull clients city, 2000 clients

100
100
80
60
40

80
60

(a) front view (b) back view

Figure 16: The percentage of overfull clients versus time, versus server load, for
100, 500 and 2000 clients using the city stations.

Y%age of overfull clients wells50, 100 clients
wells50, 500 clients
wells50, 2000 clients

wells50, 100 clients
S50, 500 clients
%age of overfull clients Weﬁ‘sSbOZ&%O c“;p&;

100
80
60

(a) front view (b) back view

Figure 17: The percentage of overfull clients versus time, versus server load, for
100, 500 and 2000 clients using the wells50 stations.

increases as the simulation progresses and as the servers become increasingly
loaded.

Figure 16 adds the scenarios for 500 and 2000 clients to the plot shown in
Figure 15, and shows results which are surprisingly pronounced. It can be seen
quite clearly that as the number of clients increases, the fraction of these clients
which are overfull increases quite rapidly as the simulation progresses. In fact,
at the end of the simulation approximately 70% of the 2000 clients are overfull.
This strongly suggests that the cellular allocation strategy does indeed perform

poorly where server capacities are concerned, as the number of clients increases.

65

Figure 17 is similar to Figure 16 except that it uses the wells50 stations.
Here we see slightly different behaviour. As the number of clients increases
so does the fraction of overfull clients, but not to the degree found in the city
stations. This time, approximately 40% of the 2000 clients are overfull at the end
of the simulation. This indicates that perhaps the cellular allocation strategy,
whilst performing poorly with respect to server capacities, appears to perform
somewhat better when the clients are more evenly distributed.

Also, a similar observation to one found in Section 16.1 can be made. As
described in Section 16.1, the total cost associated with wells50 stopped accel-
erating and continued linearly, the fraction of overfull clients for each of the 100,
500 and 2000 client scenarios stops increasing and remain constant after a short
initial period. This can also be attributed to the even distribution of clients,
since when the clients are evenly distributed it is unlikely that the number and
size of large servers can continue to grow. It is expected that further investi-
gation could reveal if these observations are related to the similar cost-related

observations from Section 16.1.

66

Part IV

Appendices

A TImplementation

This appendix describes the reference implementation of the simulation and the

software engineering issues which arose during its development.

A.1 Architecture

The project is written in C++, using the LEDA library and GNU Unix tools.
The combination of C++ and LEDA was chosen because it fits the three
main requirements of an implementation of the design described in Part II.

These requirements are:

1. To have good practical speed, suggesting a compiled language rather than

an interpreted one.
2. To be object oriented.

3. To have a high quality algorithmic library freely available. The first and

second requirements also apply to this library.

A.1.1 LEDA

The Library for Efficient Data types and Algorithms, commonly known as LEDA
[3], is the main algorithmic library in the simulation. It provides efficient im-
plementations of many common algorithms and their related data structures,
particularly those related to graphs and geometry. It is written in C++4 and is
a mature library with a large userbase. In addition, it allows the use of vari-
ous specialised extension libraries, such as the CGAL computational geometry
library.

The main LEDA data types used by the simulation are

67

e Linear lists, resizable arrays, dictionaries and priority queues,
e Arbitrary precision integer and rational numbers,

e Geometric objects such as points, vectors, lines, line segments, rays, cir-

cles, and so on,
e Graphical windowed displays, and

e Pointsets. Pointsets are collections of points in a plane on which a dynamic
Delaunay triangulation is maintained. This efficiently provides operations
such as computing the Voronoi diagram and various nearest neighbour

and range searches.

A.1.2 Naming Convention

All of the files and classes in the project follow a standard naming scheme. The
scheme makes it easier to identify classes, determine the class hierarchy, and in
the automatic code generation system.

Each word in a class name begins with a capital letter, the rest is lowercase,
and no underscores are used. For example, PlayerState.

Subclasses only ever append to their parent’s name. For example, EntityPacketAssign
inherits from EntityPacket, which in turn inherits from Entity. This means
that all the subclasses of Entity match the (Perl-style) regular expression “Entity.*$,
which becomes most useful in the build process (Section A.2) and when gener-
ating code (Section A.3).

The class ClassName is stored in its own pair of of files, ClassName.cc and
ClassName.hh. The hh file is called the header file and stores the class definition,
and the cc file is called the implementation file and stores the implementation of

the methods defined in the header file'?. Adopting this convention is particularly

2The exceptions to this are templated classes, templated functions and nested classes.
Current C++ compilers generally use what is termed template instantiation, which means
that the implementations of templated types must be included in the header file, such that
they are compiled for every particular use of the templates.

68

useful when generating code with M4 (Section A.3.2).

A.1.3 Abstractly Named Types

As is good software engineering practice, the data types used in the simulation
are abstractly named in a single common header file, common.hh. This means
that variables are typed according to their intended usage, rather than their
actual type.

For example, identifier variables are of the type Id_t and keyword variables
are of the type Keyword_t, even though both identifiers and keywords are imple-
mented as String objects. This allows identifiers to change type independently
of keywords, and with only minimal impact on the rest of the code. For exam-
ple, identifiers may be changed to be integers by changing Id_t to be defined
as an integer type rather than as a String. The only code which must then be

modified is that which assumes Id_t is actually a String.

A.1.4 GNU tools

The GNU Unix tools were chosen because they aid development in many ways,
provide features (both language and other) not available elsewhere, they are
essentially ubiquitous, and they are easily compiled and installed on a wide
range of systems.

The project makes use of the following GNU tools and features.

g++ The GNU C++ Compiler, version egcs-2.91.66 or higher. The GNU

compiler is needed for its support of 64 bit ‘long long’ integers.

make The GNU make system, version 3.77 or higher. GNU make (as opposed
to other versions of Unix make) is needed for the system Makefile because
GNU make has many convenient features available which aid in automatic

code generation (Section A.3).

69

m4 The GNU M4 macro processor, version 1.4. M4 is used for automatic code
generation, as described in Section A.3.2. GNU M4 is used because it has

many advantageous features over traditional versions of Unix M4,

getopt The GNU getopt from GNU libc 2.0 or higher. GNU’s getopt system
was used for reading command line options; it allows the more descriptive
GNU ‘long options’ to be used. However, it would still be fairly easy to

convert back to standard getopt.

A.1.5 Include Guards

Include guards are a simple and commonly used C and C++ language mecha-

nism. They wrap each header file with the code

#if !defined (INCLUDED_CLASSNAME_HH)

#define INCLUDED_CLASSNAME_HH

#tendif

This stops the contents of any header file being included more than once, and
thus avoids any redefinition errors.

However, the situation in the simulation is not this simple. Adjacency is
the situation where two classes refer to one another using pointers or references.
In this case, a C++ forward declaration must be used. This indicates to the
compiler that a class of the given name will be defined at some point in the
future. Until this point in time, only pointers or references of the forward
defined class may be used. The include guards in the project take into account
forward definitions as well as standard include guard features. They have the

general form

// CLASSNAME.hh

70

class CLASSNAME; // Forward-define CLASSNAME

#if defined (DEFER_CLASSNAME)

#undef DEFER_CLASSNAME

#else

#if !defined (INCLUDED_CLASSNAME_HH)

#define INCLUDED_CLASSNAME_HH

#include ¢‘OTHERCLASS.hh”
#define DEFER_ADJACENTCLASS

#include ‘‘ADJACENTCLASS.hh’’

class CLASSNAME {

};

#include ‘‘ADJACENTCLASS.hh’’

#endif

#tendif

In this method, forward definitions are achieved by defining DEFER_CLASSNAME
prior to including CLASSNAME. hh, and then doing a ‘full’ include of CLASSNAME . hh
after the definition of the class.

Using this method means that classes simply include any other class they
depend upon. If the dependency is only with references and pointers, then the

included class should first be deferred to obtain the forward definition, with the

71

full inclusion appearing after the class definition.

A.2 Build Process
A.2.1 The Makefile

The build process is controlled by the project’s Makefile. It contains definitions
for system dependent items, such as the C++ compiler and its options, library

locations and any optimisations.

A.2.2 Dependencies

Incremental building is where only the parts of the simulation which have
changed are rebuilt, which makes recompiling much faster. However, if class
A uses class B and the B.hh file is changed, then both A.cc and B.cc must be
recompiled. The dependency system automatically works out these dependency
relations, and encodes them in Makefile format.

Makefile dependencies are not transitive; if A depends on B and B depends
on C then A depends on C only if it is explicitly listed as a dependency. The
C+-+ compiler -M option will process a .cc file and output its complete Makefile
dependencies, consisting of all the files it includes. However, the M4 code gen-
eration techniques described in Section A.3.2, mean that not all the source files
exist when the system begins building. To avoid this problem, as each .cc and
.hh file is listed as a dependency it is ‘touched’ by the Makefile. This updates its
timestamp and fools make into thinking that this file has been changed. This is
equivalent to finding the transitive closure of the dependency graph. Generated

files which don’t exist when they are listed as a dependency are generated.

A.3 Generating Code and Reducing Code Repetition

Code repetition is reduced in the simulation through the use of generated code.
This is code which exists in a templated form in terms of various parameters.

When the simulation is built this code is expanded into fully complete code

72

which is subsequently compiled. This means that different pieces of code which
are identical except for a few details appear only once. This has the usual ben-
efits associated with reduced code repetition, such as improved maintainability,
lower complexity and easier extensibility.

Code is generated in the simulation in two different ways, with C prepro-
cessor macros and with the GNU M4 macro processor. They are applied to
different situations, with different requirements, and will be discussed in the

following subsections.

A.3.1 The C preprocessor

The C preprocessor (CPP) allows the definition of macros which are similar
to functions except that their contents textually replace the macro ‘call’. For

example, the macro
#define COORD(x, y, w) ((x) + (y)*(w))
can be used as
matrix [COORD(j-k, i, width)]
and the CPP will replace this text with
matrix[((j-k)+(i)*(width))]

IdTable and KeywordTable

The implementation of the IdTable and KeywordTable ‘classes’ use this idea.
These classes are simply dictionaries with particular types of keys (identifiers
and keywords, respectively) and any type of value. Unfortunately C++ does

not allow templated typedefs'®, so these types are implemented as the macros

3However, a workaround exists:

template <typename T> class Table {
typedef leda_dictionary<Id_t, T*> Id;

73

#define IdTable(T) leda_dictionary<Id_t, T##* >

#define KeywordTable(T) leda_dictionary<Keyword_t, T##*x >

For example, the ‘class’ IdTable (Event) is actually of the type
leda_dictionary<Id_t, Event#*>, which is an IdTable of Events. This follows

the type abstraction ideas in Section A.1.3.

Inherited constructors and instantiators

In C++, constructors are not inherited. This means that each derived class
must duplicate the definition and implementation of the constructors of the
base class. This leads to very poor code repetition, and the possibility of having
derived classes which aren’t properly substitutable. CPP macros are used here
to generate the definitions and implementations of the constructors and instan-
tiators for derived classes of the major base classes: Event, Logfile, Entity
and AllocationStrategy. The result is that two lines in the definition and
implementation of derived classes gives them a standard, consistent method of
construction and instantiation.

For example, the definitions for the constructors of the various Event-derived

classes are given by the macro

#define EVENT_CONSTRUCTOR_DEFINITIONS(CLASSNAME) \
public: \

CLASSNAME(Q) ; \

CLASSNAME(Time_t time, Id_t id); \

CLASSNAME(Time_t time, Id_t id, WordList options); \
CLASSNAME (const CLASSNAME &e); \

virtual ~CLASSNAME();

typedef leda_dictionary<Keyword_t, T*> Keyword;
};

which is subsequently used as Table<Event>: :Id for an IdTable of Events. This is considered
unacceptably complicated in light of the macro solution.

74

The derived class EventDerived defines its constructors by including the line

EVENT_CONSTRUCTOR_DEFINITIONS (EventDerived)

in its definition.

A32 M4

The M4 macro processor is a very powerful text processing utility. It allows text
to be composed from macros, in a similar fashion to the CPP. However, macros
may be recursive and M4 provides many useful built in macros for common
tasks; using M4 is quite similar to programming. M4 is used to generate entire
source files from a single ‘template’ M4 file; as mentioned in Section A.2 the
project Makefile contains rules for automatically generating these source files
when they are needed.

M4 files are used in two distinct ways in the project. The first is to provide
central registries of prototypes of various classes, the second is to provide derived

classes which are identical except for some small details.

75

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software. (Addison-Wesley, 1995)

[2] J. O'Rourke, Computational Geometry in C, Second Edition. (Cambridge
University Press, New York, 1998)

[3] K. Mehlhorn, S. Naher, LEDA: A Platform for Combinatorial and Geometric

Computing. (Cambridge University Press, Cambridge, 1999)

[4] A. S. Tanenbaum, Computer Networks, Second Edition. (Prentice Hall, En-

glewood Cliffs, 1988)

[5] V. Estivill-Castro and M. E. Houle. “Robust Distance-Based Cluster-
ing with Applications to Spatial Data Mining.” Algorithmica (Special
Issue: Algorithms for Geographical Information). To appear in 2000.

http://www.cs.usyd.edu.au/ "meh/papers/gisclust.ps.gz

76

