Parallel Coordinate Plots for Visualisation of Longitudinal Survey Data

Kevin Pulo
National Computational Infrastructure (NCI) National Facility
ANU Supercomputing Facility
kevin.pulo@anu.edu.au
Longitudinal study

- Follows the same set of individuals over time
 - Aka "Panel data"

- Eg. employment/study/relationship status over the past 10 years for a group of people

<table>
<thead>
<tr>
<th>person</th>
<th>year</th>
<th>employment</th>
<th>study</th>
<th>relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2006</td>
<td>none</td>
<td>full-time</td>
<td>single</td>
</tr>
<tr>
<td>1</td>
<td>2007</td>
<td>part-time</td>
<td>part-time</td>
<td>cohabitating</td>
</tr>
<tr>
<td>1</td>
<td>2008</td>
<td>full-time</td>
<td>none</td>
<td>married</td>
</tr>
<tr>
<td>2</td>
<td>2006</td>
<td>full-time</td>
<td>part-time</td>
<td>cohabitating</td>
</tr>
<tr>
<td>2</td>
<td>2007</td>
<td>full-time</td>
<td>none</td>
<td>cohabitating</td>
</tr>
<tr>
<td>2</td>
<td>2008</td>
<td>full-time</td>
<td>none</td>
<td>single</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Longitudinal study

- Follows the same set of individuals over time
 - Aka "Panel data"

- Eg. employment/study/relationship status over the past 10 years for a group of people

<table>
<thead>
<tr>
<th>person</th>
<th>year</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>n,f,s</td>
<td>f,p,c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>p,p,c</td>
<td>f,n,c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>f,n,m</td>
<td>f,n,s</td>
<td></td>
</tr>
</tbody>
</table>
Major Australian longitudinal studies

- Negotiating the Life Course (NLC)
- Household, Income and Labour Dynamics in Australia (HILDA)
- Growing Up in Australia
- Australian Longitudinal Study on Women's Health
- Australian Longitudinal Study of Ageing (ALSA)
Negotiating the Life Course (NLC)

- Based at ANU (RSSS, ADSRI, ASSDA)

- Is interested in:
 - "the changing life courses and decision-making processes of Australian men and women as the family and society move from male breadwinner orientation in the direction of higher levels of gender equity"

- 4 "waves" of data
 - Wave 1 (1997): 2231 respondents
 - Wave 2 (2000): 1768 respondents
 - Wave 3 (2003): 1192 respondents
Pilot visualisation project

- Collaboration between ANUSF and ASSDA

- Interested in investigating ways of directly visualising longitudinal data

- Eventual goal is full integration with the data archive website
Employment status

bullet Initial motivation

bullet Employment status can be:
 - Employed
 - Unemployed (looking for work)
 - Not in the labour force (not looking for work)

bullet NLC has retrospective data going back 40 years

bullet How to visualise the employment paths/decisions that people take over their lives?
Why visualise?

- Make use of the human perceptual system
- Eg. graphs, pie charts, etc

<table>
<thead>
<tr>
<th>t</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.56</td>
</tr>
<tr>
<td>2</td>
<td>248.89</td>
</tr>
<tr>
<td>3</td>
<td>261.22</td>
</tr>
<tr>
<td>4</td>
<td>281.55</td>
</tr>
<tr>
<td>5</td>
<td>294.88</td>
</tr>
<tr>
<td>6</td>
<td>306.21</td>
</tr>
</tbody>
</table>
Why visualise?

- Make use of the human perceptual system
- Eg. graphs, pie charts, etc

<table>
<thead>
<tr>
<th>t</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>232.56</td>
</tr>
<tr>
<td>2</td>
<td>248.89</td>
</tr>
<tr>
<td>3</td>
<td>261.22</td>
</tr>
<tr>
<td>4</td>
<td>281.55</td>
</tr>
<tr>
<td>5</td>
<td>294.88</td>
</tr>
<tr>
<td>6</td>
<td>306.21</td>
</tr>
</tbody>
</table>
Why visualise?

- Make use of the human perceptual system
- Eg. graphs, pie charts, etc
Mapping data to space

- Mapping data dimensions to space/time runs out at 4 dimensions
 - Eg. animated 3 dimensional scatter plot
Mapping data to space

- Mapping data dimensions to space/time runs out at 4 dimensions
 - Eg. animated 3 dimensional scatter plot

- Map dimensions to some more visual attributes
 - Eg. colour, glyph size, glyph shape
Visualising multi-dimensional data

- What to do when the number of dimensions is over \(\sim 10 \) (e.g. hundreds)?
 - Eg. Relationship and labour force status over the past 40 years (i.e. 80 dimensional data)

- Somehow map high dimensional data to low-dimensional space

- "Multidimensional scaling"
 - Sophisticated statistical technique
 - Tries to find (dis)similarities in the data, and then plot similar things near each other in the target space
 - Heavy-weight, difficult to explain/interpret, requires a priori selection of similarity metric
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
- "Points" in space become lines joining coordinates on the axes
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
- "Points" in space become lines joining coordinates on the axes
Parallel Coordinate Plots

- Dimensions (axes) are parallel (not orthogonal)
- "Points" in space become lines joining coordinates on the axes
Advantages

- Straightforward mapping of dimensions to 2D
- Allows many dimensions
- Human perception is good at seeing
 - adjacency (i.e. lines showing connectivity)
 - patterns (e.g. groups of lines)
Advantages

- Straightforward mapping of dimensions to 2D
- Allows many dimensions
- Human perception is good at seeing
 - adjacency (ie. lines showing connectivity)
 - patterns (eg. groups of lines)
Disadvantages

- Not great for categorical data
 - Solution: Spreading, curves

- Axis ordering/scaling/sign can matter (a lot)
 - Solution: Interactive axis manipulation

- Can get very messy
 - Solution: Interactive brushing/filtering/colouring

- The best axes/view is not always clear
 - Solution: Interactive builtin recoding
Application to NLC

- Looking at employment/labour force status (and studying)

- W1-W3 (unbalanced)

- Labour force status at each wave
 - Employed, unemployed, NILF

- Retrospective work history
 - Full-time, part-time, none

- Retrospective study history
 - Full-time, part-time, none
Employment at each wave
Retrospective work/study

- Separately
Retrospective work/study

- Separately

- Combined
 - by year
Retrospective work/study

- Separately

- Combined
 - by year
 - by age
Retrospective work/study

- Separately

- Combined
 - by year
 - by age
 - transitions