Panemalia: Visualising Longitudinal Datasets at the Australian Data Archive

Kevin Pulo
kevin.pulo@anu.edu.au

Australian National University Supercomputing Facility (ANUSF), National Computational Infrastructure National Facility (NCI NF), Canberra, Australia

2011-11-07
Longitudinal datasets

- Respondents answer survey/questionnaire
 - Mailout, phone, etc
- Follows the same respondents over time
 - Collection “waves”
- \(\Rightarrow \) Very rich form of data
- Excellent scope for advanced and sophisticated visualisation techniques
Panemalia

- Visualisation tool for longitudinal datasets
- Easy to use
 - Integrated with the ADA website
 - Interactively manipulate view of the data
 - Visualisation method presents the data in a simple and direct way
Use cases

- Initial familiarisation (all users)
- Finding information (researchers)
 - Targeted (supporting evidence), or
 - Serendipitous
- Data cleaning (archivists)
 - Problems tend to be visually apparent
Longitudinal visualisation

- Longitudinal datasets contain:
 - Thousands of respondents, answering
 - Hundreds of questions, over
 - Multiple waves
Longitudinal visualisation

- Longitudinal datasets contain:
 - Thousands of respondents, answering
 - Hundreds of questions, over
 - Multiple waves

- The challenge:

 How to visualise this data?
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
Mapping data to space

- Graphs map variables *directly* to 2D/3D space

2 variables:
\[x, y \]

Variable 2

Variable 1
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
Mapping data to space

- Graphs map variables *directly* to 2D/3D space
• But longitudinal datasets have hundreds of variables (at least)
But longitudinal datasets have hundreds of variables (at least)

Cannot possibly map this directly to hundred-dimensional space
Visualising multi-dimensional data

• But longitudinal datasets have hundreds of variables (at least)
• Cannot possibly map this directly to hundred-dimensional space
• Need some way of mapping this high-dimensional data to low-dimensional space
• But longitudinal datasets have hundreds of variables (at least)
• Cannot possibly map this directly to hundred-dimensional space
• Need some way of mapping this high-dimensional data to low-dimensional space

Parallel Coordinate Plots
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

• Dimensions (axes) are laid out in parallel
• Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Parallel Coordinate Plots

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values
Advantages

- Allows many dimensions
- Straightforward mapping
- Human perceptual system is good at seeing connectedness and patterns
Challenge: Ambiguity

Common values cause ambiguity
Challenge: Ambiguity

Common values cause ambiguity
Solution: (a) Curves
Challenge: Ambiguity

Common values cause ambiguity
Solution: (a) Curves
Challenge: Ambiguity

Common values cause ambiguity
Solution: (a) Curves (b) Spreading
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation
Challenge: Axis parameters

View affected by axis ordering, sign, scaling, translation

Solution: Interactive view manipulation
Pilot implementation

- Based on “parvis” InfoVis research software
- Java application
 - Swing + Java2D canvas
- Issues highlighted:
 - Web integration: possible, but not optimal
 - Data storage: flat text files not scalable
 - Interactivity: poor responsiveness, usability
- Useful to confirm the use cases and benefits of longitudinal visualisation
Pilot implementation
Panemalia technology

- **Frontend**
 - DHTML (HTML5 + Javascript + CSS)
 - jQuery + jQueryUI
 - raphaelJS (SVG or VML)
 - Requires modern browser
 - (But not Firefox on Linux)

- **Backend**
 - Ruby on Rails
 - SQLite
 - R

- **Queries and results using AJAX + JSON**
Negotiating the Life Course (NLC)

- 4 waves (unbalanced), 1000–3000 respondents
- Examine aspects relating to labour force participation
 - Work and study history
 - Retrospectively from age 15 (up to age 62)
 - Full-time, part-time, none
Work/study: interleaved by year
Work/study: interleaved by year

Panemalia: Negotiating the Life Course (NLC)
Work/study: interleaved by year
Work/study: interleaved by year
Work/study: interleaved by year
Work/study: interleaved by year

Panemalia: Negotiating the Life Course (NLC)
Work/study: interleaved by year

Panemalia: Negotiating the Life Course (NLC)
Work/study: combined by year
Work/study: combined by year

Panemalia: Negotiating the Life Course (NLC)
Work/study: combined by age
Work/study: combined by age
Work/study: combined by age

Panemalia: Negotiating the Life Course (NLC)

Variables:
- Demographics
- Respondent sex
- Work history by year
- Study history by year
- Work/study history by year
- Age 19 and below
- Age 20 to 29
- Age 30 to 39
- Age 40 to 49
- Age 50 to 59
- Age 60 and above

Respondent sex
- 1: Male
- 2: Female

Options
- Colour Palette

Funding Partners
- Australian Consortium for National Collaborative Research
- ANU
- The University of Queensland
- The University of Western Australia

Collaboration Partners
Work/study: combined by age

Panemalia: Negotiating the Life Course (NLC)

Variables
- Demographics
 - Respondent sex
 - 1: Male
 - 2: Female
- Work history by year
- Study history by year
- Work/study history by year
- Age 19 and below
- Age 20 to 29
- Age 30 to 39
- Age 40 to 49
- Age 50 to 59
- Age 60 and above

Options
- Colour Palette
Work/study: combined by age
Work/study: combined by age
Work/study: combined by age
Moving forwards

• Improved interactive performance
 - WebGL
 - Web workers (multithreading)
 - Remote desktop to ADA Virtual Lab VM

• State and session management
 - “How did I get to this view?”
 - “I had a great view 2 minutes ago, now it’s gone.”
 - Sessions spanning many days and locations

• Data cleaning
 - Allow sandboxed raw dataset upload, auto-convert and private visualisation
 - Standalone Panemalia in a desktop VM image