Panemalia: Visualising Longitudinal Datasets at the Australian Data Archive

Kevin Pulo kevin.pulo@anu.edu.au

Australian National University Supercomputing Facility (ANUSF), National Computational Infrastructure National Facility (NCI NF), Canberra, Australia

2011-11-07

Longitudinal datasets

- Respondents answer survey/questionaire
 - Mailout, phone, etc
- Follows the same respondents over time
 - Collection "waves"
- → Very rich form of data
- Excellent scope for advanced and sophisticated visualisation techniques

Panemalia

- Visualisation tool for longitudinal datasets
- Easy to use
 - Integrated with the ADA website
 - Interactively manipulate view of the data
 - Visualisation method presents the data in a simple and direct way

Use cases

- Initial familiarisation (all users)
- Finding information (researchers)
 - Targeted (supporting evidence), or
 - Serendipitous
- Data cleaning (archivists)
 - Problems tend to be visually apparent

Longitudinal visualisation

- Longitudinal datasets contain:
 - Thousands of respondants, answering
 - Hundreds of questions, over
 - Multiple waves

Longitudinal visualisation

- Longitudinal datasets contain:
 - Thousands of respondants, answering
 - Hundreds of questions, over
 - Multiple waves
- The challenge:

How to visualise this data?

Graphs map variables directly to 2D/3D space

2 variables: x, y

Graphs map variables directly to 2D/3D space

2 variables: x, y

 But longitudinal datasets have hundreds of variables (at least)

- But longitudinal datasets have hundreds of variables (at least)
- Cannot possibly map this directly to hundred dimensional space

- But longitudinal datasets have hundreds of variables (at least)
- Cannot possibly map this directly to hundred dimensional space
- Need some way of mapping this high-dimensional data to low-dimensional space

- But longitudinal datasets have hundreds of variables (at least)
- Cannot possibly map this directly to hundred dimensional space
- Need some way of mapping this high-dimensional data to low-dimensional space

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

- Dimensions (axes) are laid out in parallel
- Use lines to join variable values

Advantages

- Allows many dimensions
- Straightforward mapping
- Human perceptual system is good at seeing connectedness and patterns

Common values cause ambiguity

Common values cause ambiguity Solution: (a) Curves

Common values cause ambiguity Solution: (a) Curves

Common values cause ambiguity
Solution: (a) Curves (b) Spreading

Facility

Supercomputer

Facility

Facility

Facility

View affected by axis ordering, sign, scaling, translation Solution: Interactive view manipulation

Pilot implementation

- Based on "parvis" InfoVis research software
- Java application
 - Swing + Java2D canvas
- Issues highlighted:
 - Web integration: possible, but not optimal
 - Data storage: flat text files not scalable
 - Interactivity: poor responsiveness, usability
- Useful to confirm the use cases and benefits of longitudinal visualisation

Pilot implementation

Panemalia technology

- Frontend
 - DHTML (HTML5 + Javascript + CSS)
 - jQuery + jQueryUI
 - raphaelJS (SVG or VML)
 - Requires modern browser
 - (But not Firefox on Linux)
- Backend
 - Ruby on Rails
 - SQLite
 - R
- Queries and results using AJAX + JSON

Demo — NLC

Negotiating the Life Course (NLC)

- 4 waves (unbalanced), 1000–3000 respondents
- Examine aspects relating to labour force participation
 - Work and study history
 - Retrospectively from age 15 (up to age 62)
 - Full-time, part-time, none

Moving forwards

- Improved interactive performance
 - WebGL
 - Web workers (multithreading)
 - Remote desktop to ADA Virtual Lab VM
- State and session management
 - "How did I get to this view?"
 - "I had a great view 2 minutes ago, now it's gone."
 - Sessions spanning many days and locations
- Data cleaning
 - Allow sandboxed raw dataset upload, auto-convert and private visualisation
 - Standalone Panemalia in a desktop VM image

Questions? Comments?

